OCEAN > SOUTHERN OCEAN
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
Metadata record for data from ASAC Project 545 See the link below for public details on this project. From the abstract of the referenced paper: Blood was collected for haematological, red cell enzyme and red cell metabolic intermediate studies from 20 Southern elephant seals Mirounga leonina. Mean haematological values were: haemoglobin (Hb) 22.4 plus or minus 1.4 g/dl, packed cell volume (PCV) 54.2 plus or minus 3.8%, mean cell volume (MCV) 213 plus or minus 5 fl and red cell count (RCC) 2.5 x 10 to power 12 / l. Red cell morphology was unremarkable. Most of the red cell enzymes showed low activity in comparison with human red cells. Haemoglobin electrophoresis showed a typical pinniped pattern, ie two major components. Total leucocyte counts, platelet counts, and coagulation studies were within expected mammalian limits. Eosinophil counts varied from 0.5 x 10 to power 9 / l (5%-49%), and there was a very wide variation in erythrocyte sedimentation rates, from 3 to 60mm/h.
-
Metadata record for data from ASAC Project 1119 See the link below for public details on this project. A marked bend in the Hawaiian-Emperor seamount chain supposedly resulted from a recent major reorganization of the plate-mantle system there 50 million years ago. Although alternative mantle-driven and plate-shifting hypotheses have been proposed, no contemporaneous circum-Pacific plate events have been identified. We report reconstructions for Australia and Antarctica that reveal a major plate reorganization between 50 and 53 million years ago. Revised Pacific Ocean sea-floor reconstructions suggest that subduction of the Pacific-Izanagi spreading ridge and subsequent Marianas/Tonga-Kermadec subduction initiation may have been the ultimate causes of these events. Thus, these plate reconstructions solve long-standing continental fit problems and improve constraints on the motion between East and West Antarctica and global plate circuit closure.
-
During the ADBEX III voyage, many samples were taken of the sea ice and snow. These samples were analysed to determine water density, with the results recorded in a physical note book that is archived at the Australian Antarctic Division. Logbook(s): - Glaciology ADBEX III Water Density Results - Glaciology ADBEX III Oxygen Isotope Sample Record
-
This consolidated dataset consists of Australian Hydrographic Service (AHS) surveys HI621A and HI545 converted to International Terrestrial Reference Frame 2000 (ITRF2000) horizontal datum with Z conversion values for multiple height datums. The data was provided to the Australian Antarctic Division by Paul Digney of Jacobs consulting in February 2021. Included survey datasets: - HI621A.shp (Validated folder) - 1812_5093-HI621A_CASEY_Terrestrial.shp - QC_HI545_12pt5_appraised All data are in horizontal datum ITRF2000 and have been combined into a single ESRI geodatabase feature class titled AHS_Surveys_Casey_ITRF2000. Attribute data shows quality information, conversion factors (shift in metres) for multiple datums and the MSL orthometric height for Casey: Column Name, Alias, Meaning Easting, Easting, Easting ITRF2000 Northing, Northing, Northing ITRF2000 CD_To_GRS8, CD_To_GRS80, LAT (Chart Datum) to the Ellipsoid CD_TO_MSL_Casey, CD_To_MSL_Casey, Ellipsoid to Casey MSL Z_To_GRS80, Z_To_GRS80, Height to the Ellipsoid Z_To_MSL_Casey, Z_To_MSL_Casey, Local MSL orthometric height Vert_Uncer, Vertical_Uncertainty, How good is the Vertical Position Horiz_Unce, Horizontal Uncertainty, How good is the Horizontal Position Uncertaint, Uncertainty Comments, Depth_Comm, Depth_Comments, Vertical uncertainty ranges from 0.05 to 0.64 m and horizontal uncertainty ranges from 0.05 to 1.0 m See the attached document ‘Metadata Record Casey Final.xlsx’ for further details.
-
This dataset contains acoustic recordings from Directional Frequency Analysis and Recording (DIFAR) sonobuoys that were deployed from 30 January – 23 March 2021 during the TEMPO voyage. 251 sonobuoys were deployed yielding 460 hours of acoustic recordings. Three models of sonobuoys were used during the voyage: AN/SSQ-53F sonobuoy from SonobuoyTechSystems, USA (made in 2011; identifiable by tall black housing); Q53F sonobuoys from Ultra Electronics Australia (made in 2011 for Australian Defence; identifiable by tall silver housing); SDSQ955 (HIDAR) sonobuoys from Ultra Electronics UK (re-lifed in 2018; identifiable from small silver housing); During TEMPO, recordings were made by deploying above sonobuoys in DIFAR (standard) mode while the ship was underway (Gedamke and Robinson 2010, Miller et al. 2015). During transit, listening stations were conducted every 30 nmi in water depths greater than 200 m when Beaufort sea state was less than 7. Sonobuoys were occasionally deployed with spacing less than 30 nmi in an attempt to more precisely determine spatial extent and vocal characteristics of calls that were believed to be coming from animals relatively close to the ship’s track. During marine science stations, sonobuoys were deployed approximately 2-4 nmi prior to stopping in order to attempt to monitor them for the full six-eight hour duration of their operational life or the duration of the station. The sampling regime was chosen for compatibility with previous surveys, and to balance spatial resolution with the finite number of sonobuoys available for this study. Instrumentation, software, and data collection At each listening station, a sonobuoy was deployed with the hydrophone set to a depth near 140 m. Sonobuoys transmitted underwater acoustic signals from the hydrophone and directional sensors back to the ship via a VHF radio transmitter. Radio signals from the sonobuoy were received using an omnidirectional VHF antenna (PCTel Inc. MFB1443; 3 dB gain tuned to 144 MHz centre frequency) and a Yagi antenna (Broadband Propagation Pty Ltd, Sydney Australia) mounted on the aft handrail of the flying bridge. The antennas were each connected to a WiNRADiO G39WSBe sonobuoy receiver via low-loss LMR400 coaxial cable via a cavity filter with 1 MHz passband centered on 144 MHz. The radio reception range on the Yagi antenna was similar to previous Antarctic voyages, and was adequate for monitoring and localisation typically out to a range of 10-12 nmi, provided that the direction to the sonobuoy was close (i.e. within around 30o) to the main axis of the antenna. The radio reception on the omnidirectional antenna typically provided 5-10 nmi of omnidirectional reception from sonobuoys. At transit speed (8-11 knots), the Yagi antenna provided about 75 minutes of acoustic recording time per sonobuoy. Using both antennas together were able obtain radio reception for up to six hours (i.e. the maximum life of a 955 sonobuoy) when sonobuoys were deployed within 5 nmi of a marine science station. Received signals were digitised via the instrument inputs of a Fireface UFX sound board (RME Fireface; RME Inc.). Digitised signals were recorded on a personal computer as 48 kHz 24-bit WAV audio files using the software program PAMGuard (Gillespie et al. 2008). Data from both the Yagi and Omnidirectional antenna were recorded simultaneously as WAV audio channels 0 (left) and 1 (right). Each recorded WAV file therefore contains a substantial amount of duplication since both antennas and receivers were usually receiving the same signals from the same sonobuoy. Directional calibration The magnetic compass in each sonobuoy was not calibrated/validated upon deployment because the ship did not generate enough noise. Intensity calibration Intensity calibration and values followed those described in Rankin et al (2019). Sonobuoy deployment metadata The PAMGuard DIFAR Module (Miller et al. 2016) was used to record the sonobuoy deployment metadata such as location, sonobuoy deployment number, and audio channel in the HydrophoneStreamers table of the PAMGuard database (IN2021_V01_Difar-2021-01-22.sqlite3). A written sonobuoy deployment log (SonobuoyLog.pdf) was also kept during the voyage, and this includes additional notes and additional information not included in the PAMGuard Database such as sonobuoy type, and sonobuoy end-time. Real-time monitoring and analysis: Aural and visual monitoring of audio and spectrograms from each sonobuoy was conducted using PAMGuard for at least 5 minutes after deployment only to validate that the sonobuoy was working correctly. Additional information about sonobuoys is contained in the file: Sonobuoy data collection during the TEMPO voyage - 2021-01-15.pdf References Greene, C.R.J. et al., 2004. Directional frequency and recording ( DIFAR ) sensors in seafloor recorders to locate calling bowhead whales during their fall migration. Journal of the Acoustical Society of America, 116(2), pp.799–813. Miller, B.S. et al., 2016. Software for real-time localization of baleen whale calls using directional sonobuoys: A case study on Antarctic blue whales. The Journal of the Acoustical Society of America, 139(3), p.EL83-EL89. Available at: http://scitation.aip.org/content/asa/journal/jasa/139/3/10.1121/1.4943627. Miller, B.S. et al., 2015. Validating the reliability of passive acoustic localisation: a novel method for encountering rare and remote Antarctic blue whales. Endangered Species Research, 26(3), pp.257–269. Available at: http://www.int-res.com/abstracts/esr/v26/n3/p257-269/. Rankin, S., Miller, B., Crance, J., Sakai, T., and Keating, J. L. (2019). “Sonobuoy Acoustic Data Collection during Cetacean Surveys,” NOAA Tech. Memo. NMFS, SWFSC614, 1–36.
-
Locations of sampling sites for ASAC project 40 on voyage 7 of the Aurora Australis in the 2001/2002 season. The dataset also contains information on chlorophyll, carotenoids, coccolithophorids and species identification and counts. The voyage acronym was LOSS. There are 203 observations in the collection. These data are available via the biodiversity database. The taxa represented in this collection are (species names at time of data collection, 2001-2002): Acanthoica quattrospina Calcidiscus leptoporus Coronosphaera mediterranea Emiliania huxleyi Gephyrocapsa oceanica Pentalamina corona Syracosphaera pulchra Tetraparma pelagica Triparma columacea subsp. alata Triparma laevis subsp. ramispina Triparma strigata Umbellosphaera tenuis
-
The RAN Australian Hydrographic Service conducted hydrographic survey HI290 at Heard Island, February to March 1997. The survey dataset, which includes the Report of Survey, was provided to the Australian Antarctic Data Centre by the Australian Hydrographic Office and is available for download from a Related URL in this metadata record. The survey was lead by LT R.D.Bowden. The spatial extent given in this metadata record is that of Heard Island as the spatial extent of the survey is unknown to the Australian Antarctic Data Centre. The data are not suitable for navigation.
-
This dataset contains vertical profiles of particles in the upper water column (60 m depth) at six sites. A laser optical plankton counter (LOPC) was deployed through a hole in the sea ice, or from the stern of the Aurora Australis, and lowered to 60 m, logging as it was lowered. The LOPC records particles in the size range 100 um to 20 mm, though the small aperture (7 cm x 7 cm) means that the largest particles are probably only sampled rarely. For each site, the data are presented as normalised biomass for a series of equivalent spherical diameters (ESD). ESD is based on measurements of length and width of animals likely to be sampled via the LOPC (i.e. animals that are sampled at the same time with a traditional plankton net). The data were collected on the SIPEX II voyage of the Aurora Australis, from 14/9/2012 to 16/11/2012. Sites were all located in first year pack ice; the ship would nudge up to a floe and then samples of ice, zooplankton, etc. were collected directly by working on the floe. The LOPC was either deployed through a large hole in the pack ice, or it was deployed off the stern of the AA. Method of deployment did not really have an impact on the data collected, it was more a logistical decision based on conditions.
-
This dataset contains bathymetry (water depth), ship's heading, ship's speed and position data collected during the Nella Dan Voyage 7 1986-87. This was a marine science voyage which also visited Davis. Data are available online via the Australian Antarctic Division Data Centre web page (see Related URL below). For further information, see the Marine Science Support Voyage Report at the Related URL below.
-
General description: The associated file contains sediment pigment data from the antFOCE project 4127. Units: all pigment data in ug/g, 0 = below detection limit of HPLC. Sample collection details: At the start and end of the antFOCE experiment, four sediment core samples were taken from inside and outside each chamber or open plot by divers. The top 1 cm of the cores was then removed and placed in the dark, first at -20ºC for 2 hours, then at -80ºC until analysis at the Australian Antarctic division. Pigment analysis Frozen samples were transported under liquid N2 to a freeze drier (Dynavac, model FD-5), in pre-chilled flasks with a small amount of liquid N2 added. Custom made plumbing fitted to the freeze drier enabled samples to be purged with N2 to prevent photo-oxidation up until solvent extraction. Prior to pigment extraction five 2 g stainless steel ball bearings were added to homogenise the freeze dried sediment. The samples were bead beaten for 1 minute (Biospec products). Subsamples (~0.05 g) were immediately transferred to cryotubes with 700 µl of dimethylformamide (DMF) for two hours. Samples were kept at -80ºC and under a safe light (IFORD 902) at all times. All pigment concentrations are standardised to sediment weight. Pigments were extracted with dimethylformamide (DMF 700 µl) over a two hour period at -20ºC. Zirconia beads, and 100 µl of Apo 8 and an internal standard were added to each sub-sample. After a two hour extraction, sub-samples were bead beaten for 20 seconds and then placed in a centrifuge with filter cartridge inserts for 14 minutes at 2500 rpm at -9ºC to separate the solvent from the sediment. The supernatant was transferred into to a vial and placed in a precooled rpHPLC autosampler. The rpHPLC system used is described in Hodgson et al. (1997). Pigment detection was at 435, 470 and 665 nm for all chlorophylls and carotenoids, with spectra from 300–700 nm being collected every 0.2 seconds. Pigment identification was carried out using a combination of rpHPLC and normal phase HPLC retention times, light absorbance spectra and reference standards (see Hodgson et al., 1997). These techniques assisted in the accurate identification of pigments and their derivatives to a molecular level and enabled several pigment derivatives to be analysed. The HPLC was previously calibrated with authentic standards and protocols outlined in SCOR (1988). Data set headers: (A)Treatment: Example code 4127_SOP7_6-1-15_PlotB_R1, = prodject code_Standard Operating Procedure(SOP) used to collect samples(see antFOCE parent file)_ Date_Chamber/plot(A,B,C,D)_replicate core within Chamber/plot(1,2,3) (B) BB carot= BB caroten, type of pigment detected by HPLC. See Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more details. (C) Chl c1 = Chlorophyll derivatives see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (D) Chl c2 = Chlorophyll derivatives see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (E) Chl c3 = Chlorophyll derivative see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (F) Chla = Chlorophyll a see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (G) Ddx =Diadinoxanthin see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information (H) dtx = Diatoxanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information (I) epi = Chlorophyll epimer pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (j) Fuc = Fucoxanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (k) Gyro2 = Gyroxanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (L) Pras = Prasanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (m) Zea = Zeaxanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (n) Date = Samples taken at the start of antFOCE experiment or at the end (o) chamber = The antFOCE chamber (A,B,C,D) (p) Treatment = The associated pH level in chambers (Acidified ~7.8, Control ~8.2) (Q) Position = Samples were taken within chambers and outside chambers (outside, inside) (r) rep= Subsamples were taken within each chamber/position (R1=replicate one, R1-R4) Spatial coordinates: 66.311500 S, 110.514216 E Dates: between 1/12/2014 and 1/3/2015 Timezone:UTC+11