LONGITUDE
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
Please also see the child records of this project for access to data. Attached to this record are the originally supplied datasets for 1997-1998, and also summary files and mooring diagrams supplied in 2012. Taken from the 2008-2009 Progress Report: Progress against objectives: The key to advancing the objective of understanding ocean processes controlling uptake of atmospheric CO2 is the ability to deploy moored autonomous samplers and sensors in Southern Ocean surface waters capable of quantifying seasonal cycles in biological and biogeochemical processes. Our effort in the last 12 months has focused on development of a robust mooring platform to carry these devices. We deployed two different engineering test designs, known as Pulse 5 Heavy and Pulse 5 Light. Both designs survived 6 months in the sea, including wave heights up to 12 meters, while transmitting mooring tensions, mooring accelerations, and GPS positions live to the internet (www.imos.org.au). Following this success we are preparing to deploy the next version of Pulse with scientific instruments to measure temperature, salinity, oxygen, and phytoplankton fluorescence. In addition we deployed a deep ocean mooring with time-series sediment traps to quantify sinking particle fluxes, and in-situ settling columns to determine particle sinking rates. Taken from the 2009/2010 Progress Report: Progress against objectives: Two voyages were awarded by the Australian Marine National Facility to use RV Southern Surveyor to service these Southern Ocean Time Series (SOTS) moorings in the 2009/10 season, and for this reason the shiptime awarded to this project by AAS was not needed and was relinquished. This arrangement will continue in 2010/11 for which the MNF has again awarded two voyages in September 2010 and April 2011. The fieldwork in 2009/10 was very successful: i) the SAZ deep sediment trap mooring was recovered in September 2009 and redeployed for recovery in September 2010. ii) the PULSE biogeochemistry mooring was deployed in September 2009 and functioned beautifully prior to recovery in March 2010 for servicing. It will be redeployed in September 2010. iii) the SOFS Southern Ocean Flux Station mooring was completed and deployed in March 2010 for recovery in April 2011, and redeployment in September 2011.
-
A Lambert Glacier - Amery Ice Shelf series of airborne (Squirrel helicopter and Twin Otter fixed wing) RES and surface elevation profiles were conducted over two summer seasons; 1988/89 and 1989/90. Altogether nearly 10,000 km of various flight paths were undertaken, operating out of Mawson (67.60 S, 62.88 E), Davis (68.58 S, 77.97 E), Dovers (70.22 S, 65.87 E) or Beaver Lake (70.80 S, 68.18 E). More information can be found at the BEDMAP website. The fields in this dataset are: mission_id (unique mission identifier) latitude (decimal degrees) longitude (decimal degrees) ice_thickness (m) surface_elevation (m) water_column_thickness (m) bed_elevation (m)
-
Metadata record for data from ASAC Project 2519 See the link below for public details on this project. This dataset comprises of floating buoy data collected as part of the ARGO program. All of the data are automatically uploaded to the main ARGO data centre, and can be accessed from there (via the provided URL). Above the map of current float locations on this web page, there are buttons to allow you to access an interactive map, search for floats, and access the data. The Argo floats are programmed to measure temperature and salinity profiles from 2000m to the sea surface every 10 days. When they surface they transmit the profile data, their location, and various engineering parameters to satellite. The data ares put on the Global Telecommunications System (GTS) and are available within 24 hours. Global data centres in the USA and France receive the raw data from the country of origin and also update the data when quality control is performed. Some floats measure other data in addition to temperature and salinity. Dissolved oxygen and current velocity are two other parameters that are measured by a few floats. See the ARGO website for further details about each float (information can be accessed using the WMO (World Meteorological Organisation) numbers provided in the download file). The fields in this dataset are: Launch Date Latitude Longitude ARGO Number WMO Number Webb Number Deployment Order Number More information about the dataset is provided in a readme file as part of the download. Data were last updated in early May, 2014.
-
Digital Elevation Model of the Amery Ice Shelf derived from ERS satellite radar altimetry elevation data. Generated on a 1-km polar stereographic grid using kriging in four sections by Helen Amanda Phillips, Antarctic CRC/IASOS. Three files are available for download: Amery Ice Shelf DEM from satellite altimeter data version relative to WGS-84 ellipsoid, Amery Ice Shelf DEM from satellite altimeter data version relative to EGM96 geoid, A thickness dataset that was derived from the AIS-DEM. Each file constitutes 122,385 lines of data (+ 4 lines of header information). The fields in this dataset are: Latitude Longitude Geodial Height in metres above sea level (WGS-84 and EGM-96) Thickness
-
With a population of about 2 million pairs macaroni penguins are the most abundant penguin in the HIMI region. These birds feed on mesopelagic fish and, to a lesser extent, mackerel icefish. Despite their great abundance and comparatively proximate links in the food chain to the toothfish fishery, virtually nothing is known about the foraging ecology of macaroni penguins at HIMI. This will identify which regions of the ocean Macaroni penguins use as foraging areas, and in combination with diet studies quantify the potential for competition with fisheries operations in the HIMI region. The data are stored in a csv excel file. The fields in this dataset are: Latitude Longitude Date Direction Range Speed Bearing
-
The productivity of Antarctic waters may be controlled by the amount of iron. Experiments have shown that this is probably the case for phytoplankton but as yet we do not know if iron limits the growth of sea ice algae. This study will assess whether iron limits sea ice algae production and will conduct experiments to work out how these algae use iron. Measurements have been made to determine whether sea ice algae are limited by Fe. Sea ice samples were taken and this spreadsheet refers to those ice cores Columns A-G are self explanatory Column G is the depth in the ice core from the bottom Column H is the chlorophyll concentration in mg Chl m-2 Column I is the phaeophytin concentration in mg m-2 J is the total amount of protein in the sample ng m-2 K is the total amount of the protein flavodoxin ng m-2 L is the total amount of ferrodoxin ng m-2 These last two enable the Fe limitation status to calculated (not completed).
-
Abrupt Mid-Twentieth Century Decline in Antarctic Sea-Ice Extent from Whaling Records. Format is a WinZip'ed Microsoft Access 2000 database. The northernmost edge of the sea ice was derived from the southernmost positions of whale catches. A supplemental word document is also included with the dataset. This dataset was originally compiled by Bill de la Mare. The fields in this dataset are: record ID latitude mean latitude longitude longitude Interval date season decade id catch Record species ID
-
This dataset contains the locations of sampling sites for ASAC project 40 on rotation 2 of the French polar supply ship L'Astrolabe in the 2002/2003 season. Samples were collected between December and January of 2002/2003. It also contains the final dataset which has information on chlorophyll, carotenoids, coccolithophorids and species identification and counts. Public Summary from the project: This program aims to determine the role of single celled plants, animals, bacteria and viruses in Antarctic waters. We quantify their vital role as food for other organisms, their potential influence in moderating global climate change through absorption of CO2 and production of DMS, and determine their response to effect of climate change. For more information, see the other metadata records related to ASAC project 40 (ASAC_40). The fields in this dataset are: Voyage Tube Label Date (UTC) Time (UTC) Time (Local) Nominal Depth (m) Latitude Longitude Sea Temperature Ice (Presence or Absence - 1 or 0 respectively) Coccolithophorid sample (yes or no) Plankton Net Sample Chlorophyll a (micro grams per litre)
-
The relationship between colony area and population density of Adelie Penguins Pygoscelis adeliae was examined to determine whether colony area, measured from aerial or satellite imagery, could be used to estimate population density, and hence detect changes in populations over time. Using maps drawn from vertical aerial photographs of Adelie Penguin colonies in the Mawson region, pair density ranged between 0.1 and 3.1 pairs/m2, with a mean of 0.63 - 0.3 pairs/m2. Colony area explained 96.4% of the variance in colony populations (range 90.4 - 99.6%) for 979 colonies at Mawson. Mean densities were not significantly different among the 19 islands in the region, but significant differences in mean pair density were observed among colonies in Mawson, Whitney Point (Casey, East Antarctica) and Cape Crozier (Ross Sea) populations. This work was completed as part of ASAC project 1219 (ASAC_1219). The fields in this dataset are: Island Latitude Longitude Date Colony area Breeding Pairs Breeding Pairs per square metre Area per nest Number of nests Number of adults
-
Locations of sampling sites for ASAC project 40 on Voyage 7 of the Aurora Australis, 1993-1994 - SHAM samples. Public Summary from the project: This program aims to determine the role of single celled plants, animals, bacteria and viruses in Antarctic waters. We quantify their vital role as food for other organisms, their potential influence in moderating global climate change through absorption of CO2 and production of DMS, and determine their response to effect of climate change. For more information, see the other metadata records related to ASAC project 40 (ASAC_40). The fields in this dataset are: Sample # Filename Date CTD # Latitude Longitude Depth (m) Temperature (degrees C) Chlorophyll a (micrograms per litre)