Catalog
1708 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 1708
  • This metadata record contains an Excel file containing stable isotope analysis data of marine sediments and invertebrates collected at Davis Station from December 2009 to March 2010. Refer to Gillies et al. 2013 for sampling and analysis details. Gillies C.L., Stark J.S., Johnstone G.J., Smith S.D.A., 2013. Establishing a food web model for coastal Antarctic benthic communities: a case study from the Vestfold Hills, Marine Ecology Progress Series, Vol. 478: 27 – 41. Also refer to the Davis STP reports lodged under metadata record Davis_STP for methods and result details. Background of the Davis STP project Refer to the Davis STP reports lodged under metadata record Davis_STP.

  • Public Description of the Project This project will assess the importance of the trace micro-nutrient element iron to Antarctic sea-ice algal communities during the International Polar Year (2007-2009). We will investigate the biogeochemistry of iron, including a comprehensive examination of its distribution, speciation, cycling and role in fuelling ice-edge phytoplankton blooms. A significant part of this research will concentrate on the the influence of organic exopolysaccharides on iron solubility, complexation and bioavailability, both within the ice and in surrounding snow and surface seawater. This innovative research will improve our understanding of key processes that control the productivity of the climatically-important Antarctic sea-ice zone. Project objectives: This project will assess the importance of the trace element iron (Fe) as a micro-nutrient to seasonal sea-ice algal communities in the Australian sector of Antarctica during the International Polar Year (2007-09). We will investigate the biogeochemistry of Fe, including a comprehensive examination of its distribution, speciation, cycling and role in fuelling ice-edge phytoplankton blooms. A significant part of this research will concentrate on the influence of organic exopolysaccharides (EPS) on Fe solubility and complexation (and hence bioavailability), both within the ice and in surrounding surface waters. This innovative research will improve our understanding of key processes that control the productivity of the climatically-important Antarctic sea-ice zone. This metadata record describes data collected at Casey Station as part of project 3026. Collected data from the time series experiment in sea ice near Casey station Antarctica (66 degrees 13 minutes 07 seconds S, 110 degrees 39 minutes 02 seconds E). Measurements were made at the same location during seven consecutive study days between 10 November and 2 December 2009. Variables measured were pFe (particulate Fe), TDFe (total dissolvable Fe), dFe (dissolved Fe), plFe (particulate leachable Fe), PON (particulate organic nitrogen), POC (particulate organic carbon), Chl a (Chlorophyll a), salinity, ice temperature, vb/v (brine volume fraction), mean daily air temperature, and max daily air temperature. Measurements were taken on each study day of the snow directly overlying the sea ice (SNOW), a shallow and a deep brine (B- and B+, respectively), three sections of the sea ice core at median depths 3, 33, and 73 centimeters (SI1, SI2, and SI3, respectively) as well as two consecutive sections in the lower most basal ice (SI4 and SI5). Finally, four samples were taken of the underlying seawater at 0, 5, 10 and 15 m (SW0, SW5, SW10 and SW15, respectively).

  • The RAN Australian Hydrographic Service conducted hydrographic survey HI242 at Macquarie Island in November and December 1996. The main survey areas were Buckles Bay and Hasselborough Bay. Survey lines were also followed from Elliott Reef down the west coast to Langdon Bay and down the east coast to Buckles Bay. The survey dataset, which includes metadata, was provided to the Australian Antarctic Data Centre by the Australian Hydrographic Office and is available for download from a Related URL in this metadata record. The survey was lead by LT M.A.R.Matthews. The data are not suitable for navigation.

  • Locations of sampling sites for ASAC project 40 on voyage 7 of the Aurora Australis in the 2001/2002 season. The dataset also contains information on chlorophyll, carotenoids, coccolithophorids and species identification and counts. The voyage acronym was LOSS. There are 203 observations in the collection. These data are available via the biodiversity database. The taxa represented in this collection are (species names at time of data collection, 2001-2002): Acanthoica quattrospina Calcidiscus leptoporus Coronosphaera mediterranea Emiliania huxleyi Gephyrocapsa oceanica Pentalamina corona Syracosphaera pulchra Tetraparma pelagica Triparma columacea subsp. alata Triparma laevis subsp. ramispina Triparma strigata Umbellosphaera tenuis

  • The Sub-Antarctic Zone (SAZ) in the Southern Ocean provides a significant sink for atmospheric CO2 and quantification of this sink is therefore important in models of climate change. During the SAZ-Sense (Sub-Antarctic Sensitivity to Environmental Change) survey conducted during austral summer 2007, we examined CO2 sequestration through measurement of gross primary production rates using 14C. Sampling was conducted in the SAZ to the south-west and south-east of Tasmania, and in the Polar Frontal Zone (PFZ) directly south of Tasmania. Despite higher chlorophyll biomass off the south-east of Tasmania, production measurements were similar to the south-west with rates of 986.2 plus or minus 500.4 and 1304.3 plus or minus 300.1 mg C m-2 d-1, respectively. Assimilation numbers suggested the onset of cell senescence by the time of sampling in the south-east, with healthy phytoplankton populations to the south-west sampled three week earlier. Production in the PFZ (475.4 plus or minus 168.7 mg C m-2 d-1) was lower than the SAZ, though not significantly. The PFZ was characterised by a defined deep chlorophyll maximum near the euphotic depth (75 m) with low production due to significant light limitation. A healthy and less light-limited phytoplankton population occupied the mixed layer of the PFZ, allowing more notable production there despite lower chlorophyll. A hypothesis that iron availability would enhance gross primary production in the SAZ was not supported due to the seasonal effect that masked possible responses. However, highest production (2572.5 mg C m-2 d-1) was measured nearby in the Sub-Tropical Zone off south-east Tasmania in a region where iron was likely to be non-limiting (Bowie et al., 2009). Table 1:Gross primary production at each CTD station and associated data; Mixed layer depth (Zm, m), incoming PAR (mol m-2 d-1), vertical light attenuation (Kd, m-1), euphotic depth (Zeu, m), differences between euphotic depth and mixed layer depth (Zeu-Zm, m), column-integrated chlorophyll a (0 to 150 m, mg m-2), column-integrated production (0 to 150 m, mg C m-2 d-1), production within the mixed layer (mg C m-2 d-1), production below the mixed layer (mg C m-2 d-1), production within the euphotic zone (1% PAR, mg C m-2 d-1), production below the euphotic zone (mg C m-2 d-1). Kd values that were calculated from chlorophyll a v PAR regressions are marked with an asterisk. At some stations there was a surface mixed layer as well as a secondary mixed layer and both depths are indicated. Table 2:Photosynthetic attributes of phytoplankton with depth at each CTD station; Mixed layer depth (m), euphotic depth (Zeu, m), maximum photosynthetic rate [Pmax, mg C (mg chl a)-1 h-1], maximum photosynthetic rate corrected for photoinhibition [Pmaxb, mg C (mg chl a)-1 h-1], initial slope of the light-limited section of the P-I curve [alpha, mg C (mg chl a)-1 h-1 (micro-mol m-2 s-1)-1], rate of photoinhibition [beta, mg C (mg chl a)-1 h-1 (micro-mol m-2 s-1)-1], intercept of the P-I curve with the carbon uptake axis [c, mg C (mg chl a)-1 h-1], light intensity at which carbon-uptake became saturated (Ek, micro-mol m-2 s-1), and chlorophyll a measured using HPLC (mg m-3).

  • Sea-ice cores (0.09 m internal diameter) were sampled during Polarstern voyage PS117 to the Weddell Sea during December 2018 to January 2019. Ice core measurements include position, snow thickness, ice thickness, ice core temperature and bulk-salinity profiles, macro-nutrient concentrations as well as Chlorophyll-a pigment content. In addition on each ice station downwelling (surface) and under-ice irradiances were measured with a hyperspectral radiometer.

  • These data describe pack ice characteristics in the Antarctic sea ice zone. These data are in the ASPeCt format. National program: Australia Vessel: Aurora Australis Dates in ice: 3 Dec 1990 - 5 Dec 1990 Observers: Ian Allison Summary of voyage track: 3/12 Ice edge at 63d52mS, 79d56mE 3-5/12 Vessel steamed from ice edge to Mawson The fields in this dataset are: SEA ICE CONCENTRATION SEA ICE FLOE SIZE SEA ICE SNOW COVER SEA ICE THICKNESS SEA ICE TOPOGRAPHY SEA ICE TYPE RECORD DATE TIME LATITUDE LONGITUDE OPEN WATER TRACK SNOW THICKNESS SNOW TYPE SEA TEMPERATURE AIR TEMPERATURE WIND VELOCITY WIND DIRECTION FILM COUNTER FRAME COUNTER FOR FILM VIDEO RECORDER COUNTER VISIBILITY CODE CLOUD WEATHER CODE COMMENTS

  • The Acoustic Doppler Current Profiler (ADCP) data were acquired constantly over the duration of the Australian 2006 V3 BROKE-West survey. Data presented here are the results of 1/2 hour integrations of the cruise data from the start of the voyage in Fremantle, Australia, to the start of the return leg just north of Australia's Davis Station in Antarctica (-66.56S, 77.98E). North and eastward components of the current velocity are given for depths up to 300m below the surface along the ship track. Data Acquisition: The shipboard ADCP is a continuous broadband recording device that operates over the duration of the voyage, ensonifying the water column once a second. As the instrument is fixed to the ship, it has a range of approximately 250m deep. Data from the shipboard Ashtek 3 dimensional GPS system is used along with bottom tracking data (when the water is shallow enough i.e. less than 250m) and automatically integrated into ADCP ping data to provide absolute current velocities. Data Processing: The ship ADCP constantly and automatically collects and stores raw .rawdp binary files in ensembles of three minutes worth of pings. This is regularly automatically collated into larger .adp files containing data for several hours (200+ ensembles). This data are processed for use in analysis using specialist software provided by Mark Rosenberg (mark.rosenberg AT utas.edu.au) that integrates together data from the ADCP .adp files for periods (30 minutes in this case) over a give time (from cruise start to the 3-Mar-2006). This produces .any ASCII files. These ASCII files are read into the Matlab processing package using scripts provided by Sergeui Sokolov (sergeui.sokolov AT csiro.au) which then produces the .mat matlab data files covered by this metadata. ADCP data requires proper calibration with respect to ship motion, which were not carried out for this data set, and could cause significant change when processed properly after the voyage. Dataset format: The processed ADCP file is given in matlab .mat format. All 1/2 hour integrations of ADCP data for BROKE-West from 3 days (31-dec-2005) before departure from Fremantle, to the 3-Mar-2006 are included, each column in each matrix or array representing an individual 1/2 hour integration in chronological order. There are numerous gaps in the data that occurred when the ADCP crashed and was not immediately reset or when bad data prevented processing. The location can be identified by plotting a scatter plot of longitude vs latitude, and the times by plotting the julian date. The matlab variables contained in the BROKE_West_ADCP.mat file are contained inside the adcp structure: lon: Longitude (decimal degrees) lat: Latitude (decimal degrees) time: Each column gives the year month day and hour of collection of the corresponding columns in the other variables. depth: Depth of each corresponding velocity value for each 1/2 profile. 60 fixed bin depths are given for each profile. (meters) press: As for depth but given in db. (db) u: Absolute current eastward component in ms-1 for each depth and profile. v: Absolute current northward component in ms-1 for each depth and profile. unav: Ship absolute eastward component in ms-1 for each profile vnav: Ship absolute northward component in ms-1 for each profile jtime: Julian date for each profile (julian days) badvals: Indexes of anomolous latitude and longitude values Acronyms used: ADCP: Accoustic Doppler Current Profiler IASOS: Institute of Antarctic and Southern Ocean Studies CSIRO: Commonwealth Scientific and Industrial Research Organisation This work was completed as part of ASAC projects 2655 and 2679 (ASAC_2655, ASAC_2679).

  • This dataset contains the underway data collected during the Aurora Australis Voyage 6 1997-98. This was a dedicated marine science cruise researching Subantarctic oceanography. Underway (meteorological, fluorometer and thermosalinograph) data are available online via the Australian Antarctic Division web page. No Echolistener (depth) data were logged during this voyage. For further information, see the Marine Science Support Data Quality Report via the Related URL section.

  • These data describe pack ice characteristics in the Antarctic sea ice zone. These data are in the ASPeCt format. National program: United States Vessel: Gould Dates in ice: 27 Jul 2001 - 26 Aug 2001 Observers: Chris Fritsen, Sarah Marschall, Jeramie Memmott, Sharon Stammerjohn, Bruce Elder, Kerry Claffey, Shonna Dovel, Angela Gibson Summary of voyage track: 27/7 Ice edge at approx 65S, 64W 27/7 - 26/8 Ship track focussed on the western side of the Peninsula 26/8 Ice observations stopped at Palmer station (Note - the NBP was in the same region at the same time - NP070801) The fields for this dataset are: SEA ICE CONCENTRATION SEA ICE FLOE SIZE SEA ICE SNOW COVER SEA ICE THICKNESS SEA ICE TOPOGRAPHY SEA ICE TYPE RECORD DATE TIME LATITUDE LONGITUDE OPEN WATER TRACK SNOW THICKNESS SNOW TYPE SEA TEMPERATURE AIR TEMPERATURE WIND VELOCITY WIND DIRECTION FILM COUNTER FRAME COUNTER FOR FILM VIDEO RECORDER COUNTER VISIBILITY CODE CLOUD WEATHER CODE COMMENTS