environment
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
Temperature loggers have been deployed at a range of sites statewide in waters ranging between 6 and 22m depth. From 2012, 27 sites around Tasmania are being monitored. This record shows data collected from 2004 up to December 2020. Data is still being collected (April 2023) and will be added to this collection as it becomes available.
-
These are the scanned electronic copies of field and lab books used at Davis Station, and Kingston between 2009 and 2011 as part of ASAC (AAS) project 3217 - Environmental assessment of Davis sewage treatment plant up-grade.
-
Untreated, macerated wastewater effluent has been discharged to the sea at Davis Station since 2005, when the old wastewater treatment infrastructure was removed. This environmental assessment was instigated to guide the choice of the most suitable wastewater treatment facility at Davis. The assessment will support decisions that enable Australia to meet the standards set for the discharge of wastewaters in Antarctica in national legislation (Waste Management Regulations of the Antarctic Treaty Environmental Protection Act - ATEP) and to meet international commitments (the Madrid Protocol) and to meet Australia's aspirations to be a leader in Antarctic environmental protection. The overall objective was to provide environmental information in support of an operational infrastructure project to upgrade wastewater treatment at Davis. This information is required to ensure that the upgrade satisfies national legislation (ATEP/Waste Management Regulations), international commitments (the Madrid Protocol) and maintain the AAD's status as an international leader in environmental management. The specific objectives were to: 1. Wastewater properties: Determine the properties of discharged wastewater (contaminant levels, toxicity, microbiological hazards) as the basis for recommendations on the required level of treatment and provide further consideration of what might constitute adequate dilution and dispersal for discharge to the nearshore marine environment 2. Dispersal and dilution characteristics of marine environment: Assess the dispersing characteristics of the immediate nearshore marine environment in the vicinity of Davis Station to determine whether conditions at the existing site of effluent discharge are adequate to meet the ATEP requirement of initial dilution and rapid dispersal. 3. Environmental impacts: Describe the nature and extent of impacts to the marine environment associated with present wastewater discharge practices at Davis and determine whether wastewater discharge practices have adversely affected the local environment. 4. Evaluate treatment options: Evaluate the different levels of treatment required to mitigate and/or prevent various environmental impacts and reduce environmental risks.
-
Metadata record for data from ASAC Project 2665 See the link below for public details on this project. The Antarctic environment with its harsh climatic conditions, minimal human activity and its unique ecosystems is unlike any of the World's other environments. As such, it is important that an understanding of the Antarctic environment is developed in order to gain a full appreciation of the impacts of human activities in Antarctica and to determine the most effective means to remediate and protect the Antarctic environment. To achieve these goals, new sensitive and selective techniques for sampling metal contaminant levels in marine sediments are being developed. The project is not an environmental study of the Antarctic environment (ie no metal concentrations in water or sediments), but rather the development of an analytical technique for use in Antarctica. We are still in the process of developing this technique and much of the development phase has involved qualitative assessment rather than generating quantitative data. We are currently trialling the technique in the lab and will conduct field trials in the Derwent Estuary. Taken from the abstract of the referenced paper: A novel binding phase was developed for use in diffusive gradients in thin-film (DGT) sampling for Cu(II) by employing methylthymol blue as a chelating and chromogenic agent. Methylthymol blue was adsorbed onto beads of Dowex 1x8 resin (200-400 mesh) and the resin beads were then immobilised onto an adhesive disc. Analysis of exposed binding discs by either UV-vis spectrophotometry or computer imaging densitometry provided robust quantification of adsorbed Cu(II) in the 0.2-1 micro gcm-2 range, allowing detection at micro gL-1 concentrations in the test solution (ca. 17 micro gL-1 for a 24 h deployment), and in good agreement with established DGT theory. The method was shown to be a potential replacement for binding phases based on Chelex 100 where a colorimetric response to a specific metal is desired.
-
These are the scanned electronic copies of field and lab books used at Casey Station between 1997 and 2012 as part of ASAC (AAS) project 2385 - Development and application of DGT devices for passive sampling of contaminated waters in the Antarctic environment.
-
Metadata record for data from ASAC Project 1005 Metal and organic contaminants in marine invertebrates from Antarctica, field study of their concentrations, laboratory study of their toxicities. See the link below for public details on this project. Data from this project are now unrecoverable. Several publications arising from the work are attached to this metadata record, and are available to AAD staff only. Taken from the referenced publications: Bioaccumulation of Cd, Pb, Cu and Zn in the Antarctic gammaridean amphipod Paramoera walkeri was investigated at Casey station. The main goals were to provide information on accumulation strategies of the organisms tested and to verify toxicokinetic models as a predictive tool. The organisms accumulated metals upon exposure and it was possible to estimate significant model parameters of two compartment and hyperbolic models. These models were successfully verified in a second toxicokinetic study. However, the application of hyperbolic models appears to be more promising as a predictive tool for metals in amphipods compared to compartment models, which have failed to adequately predict metal accumulation in experiments with increasing external exposures in previous studies. The following kinetic bioconcentration factors (BCFs) for the theoretical equilibrium were determined: 150-630 (Cd), 1600-7000 (Pb), 1700-3800 (Cu) and 670-2400 (Zn). We find decreasing BCFs with increasing external metal dosing but similar results for treatments with and without natural UV radiation and for the combined effect of different exposure regimes (single versus multiple metal exposure) and/or the amphipod collective involved (Beall versus Denison Island). A tentative estimation showed the following sequence if sensitivity of P. walkeri to an increase of soluble metal exposure: 0.2-3.0 micrograms Cd per litre, 0.12-0.25 micrograms Pb per litre, 0.9-3.0 micrograms Cu per litre and 9-26 micrograms Zn per litre. Thus, the amphipod investigated proved to be more sensitive as biomonitor compared to gammarids from German coastal waters (with the exception of Cd) and to copepods from the Weddell Sea inferred from literature data. ####### This study provides information on LC50 toxicity tests and bioaccumulation of heavy metals in the nearshore Antarctic gammarid, Paramoera walkeri. The 4 day LC50 values were 970 micrograms per litre for copper and 670 micrograms per litre for cadmium. Net uptake rates and bioconcentration factors of these elements were determined under laboratory conditions. After 12 days of exposure to 30 micrograms per litre, the net uptake rates were 5.2 and 0.78 micrograms per gram per day and the bioconcentration factors were 2080 and 311 for copper and cadmium respectively. The body concentrations of copper were significantly correlated with the concentrations of this element in the water. Accumulation of copper and cadmium continued for the entire exposure suggesting that heavy metals concentrations were not regulated to constant concentrations in the body. Using literature data about two compartments (water-animal) first-order kinetic models, a very good agreement was found between body concentrations observed after exposure and model predicted. Exposure of P. walkeri to mixtures of copper and cadmium showed that accumulation of these elements can be assessed by addition of results obtained from single exposure, with only a small degree of uncertainty. The study provides information on the sensitivity of one Antarctic species towards contaminants, and the results were compared with data of similar species from lower latitudes. An important finding is that sensitivity to toxic chemicals and toxicokinetic parameters in the species investigated are comparable with those of non-polar species. The characteristics of bioaccumulation demonstrate that P. walkeri is a circumpolar species with the potential to be a standard biological indicator for use in monitoring programmes of Antarctic nearshore ecosystems. the use of model prediction provide further support to utilise these organisms for biomonitoring. ####### Heavy-metal concentrations were determined in tissues of different species of benthic invertebrates collected in the Casey region where an old waste-disposal tip site is a source of contamination. the species studied included the bivalve Laternula elliptica, starfish Notasterias armata, heart urchins Abatus nimrodi and A. ingens and gammaridean amphipod Paramoera walkeri. The specimens were collected at both reference and contaminated locations where lead was the priority element and copper was the next most important in terms of increased concentrations. The strong association between a gradient of contamination and concentrations in all species tested indicated that they are reflecting well the environmental changes, and that they appear as appropriate biological indicators of heavy-metal contamination. Aspects of the biology of species with different functional roles in the marine ecosystem are discussed in relation to their suitability for wider use in Antarctic monitoring programmes. For example, in terms of heavy-metal bioaccumulation, the bivalve appears as the most sensitive species to detect contamination; the starfish provides information on the transfer of metals through the food web while the heart urchin and gammarid gave indications of the spatial and temporal patterns of the environmental contamination. The information gathered about processes of contaminant uptake and partitioning among different tissues and species could be used in later studies to investigate the behaviour and the source of contaminants.
-
We set out to achieve floe-scale 3-D mapping of sea ice draft and bio-optical parameters using a Multibeam SONAR and Hyperspectral radiometer mounted to an Autonomous Underwater Vehicle (AUV). The AUV utilised was the 'JAGUAR' Seabed-class vehicle from the Deep Submergence Laboratory at the WoodsHole Oceanographic Institution. The AUV comes with a CTD and ADCP. However these are not deployed as scientific sensors and therefore are unsupported in terms of metadata. In particular the CTD was not calibrated before or during the voyage. The AUV used a LongBaseLine system formed by three transponders to navigate to and from the survey grid. Two were located on the ice and the third was deployed from the back of the ship with an acoustic communications modem. Once at the survey grid beneath the sea ice, the AUV used the DVL to navigate using bottom-tracking of the underside of the sea ice. We conducted 4 missions beneath sea-ice during the SIPEX-II voyage. The current status of the data is that is in un-processed and unavailable until final processing is completed in 2013. Persons interested in the data should contact Dr Guy Williams directly for further information and preliminary figures relating to the AUV missions. The files currently in the archive are in raw form. Some preliminary data is provided for stations 2, 3, 4 and 6 as: floe-2-20120926.mat floe-3-20121003.mat floe-4-20121006.mat floe-6-20121013.mat These can be accessed using the Seabed_plot routines (MATLAB) in this folder. There is a readme file provided called what-is-this.txt Also included is the video footage taken from the AUV using a GoPro HD Hero. Video Codec: avc1 Resolution: 1920x1080 pixels Frame Rate: 29.970030 f/s Audio Codec: mp4a Audio Bitrate: 1536 kb/s Finally, plots of the data for ice stations 2,3,4 and 6 are included in the preliminary figures folder. The file names indicate which ice station the plots are from.
-
This data set provides the organochlorine content found in four sea-ice samples collected in the vicinity of Davis station over a three week period in 2014/15. Sea-ice is thought to serve as a reservoir for organochlorine pesticides during the winter. The aim of the study was to investigate the movement of organochlorine pesticides in the seasonal sea-ice during ice melt. A custom made, closed-system, ice melting unit, coupled to an in-situ water filter, was implemented for sampling. Minimal ice-melt or change in organchlorine content was found over the three week period. Changes were attributed to high ventilation of the sea-ice surface caused by high wind speeds found in the Antarctic compared to the Arctic. 4 sea-ice samples were collected in the vicinity of Davis station and contaminant profiles extracted and analysed. Caution should be taken in interpretation of data as the ice/water extraction unit failed during operation.
-
Public Description of the Project This project will assess the importance of the trace micro-nutrient element iron to Antarctic sea-ice algal communities during the International Polar Year (2007-2009). We will investigate the biogeochemistry of iron, including a comprehensive examination of its distribution, speciation, cycling and role in fuelling ice-edge phytoplankton blooms. A significant part of this research will concentrate on the the influence of organic exopolysaccharides on iron solubility, complexation and bioavailability, both within the ice and in surrounding snow and surface seawater. This innovative research will improve our understanding of key processes that control the productivity of the climatically-important Antarctic sea-ice zone. Project objectives: This project will assess the importance of the trace element iron (Fe) as a micro-nutrient to seasonal sea-ice algal communities in the Australian sector of Antarctica during the International Polar Year (2007-09). We will investigate the biogeochemistry of Fe, including a comprehensive examination of its distribution, speciation, cycling and role in fuelling ice-edge phytoplankton blooms. A significant part of this research will concentrate on the influence of organic exopolysaccharides (EPS) on Fe solubility and complexation (and hence bioavailability), both within the ice and in surrounding surface waters. This innovative research will improve our understanding of key processes that control the productivity of the climatically-important Antarctic sea-ice zone. This metadata record describes data collected at Casey Station as part of project 3026. Collected data from the time series experiment in sea ice near Casey station Antarctica (66 degrees 13 minutes 07 seconds S, 110 degrees 39 minutes 02 seconds E). Measurements were made at the same location during seven consecutive study days between 10 November and 2 December 2009. Variables measured were pFe (particulate Fe), TDFe (total dissolvable Fe), dFe (dissolved Fe), plFe (particulate leachable Fe), PON (particulate organic nitrogen), POC (particulate organic carbon), Chl a (Chlorophyll a), salinity, ice temperature, vb/v (brine volume fraction), mean daily air temperature, and max daily air temperature. Measurements were taken on each study day of the snow directly overlying the sea ice (SNOW), a shallow and a deep brine (B- and B+, respectively), three sections of the sea ice core at median depths 3, 33, and 73 centimeters (SI1, SI2, and SI3, respectively) as well as two consecutive sections in the lower most basal ice (SI4 and SI5). Finally, four samples were taken of the underlying seawater at 0, 5, 10 and 15 m (SW0, SW5, SW10 and SW15, respectively).
-
This work was completed as part of the SIPEX - Sea Ice Physics and Ecosystem eXperiment - voyage. Adapted from the SIPEX website: During SIPEX we investigated the biogeochemistry of iron (Fe), including a comprehensive examination of its distribution, speciation (i.e. the different forms of Fe), cycling and its role in fuelling sea ice-based and pelagic algal communities. A major part of this research concentrated on the influence of organic exopolysaccharides (EPS) on Fe solubility and its bio-availability. The distribution of other bioactive trace elements was also examined as a means of fingerprinting the source(s) of Fe, as well as indicating their biological requirements. ######### Data on the small- to medium scale (0.1-1000 m) spatial and temporal distribution of Fe and EPS in sea ice cores, surface snow, brine and underlying seawater were determined in each sampled medium by the interdisciplinary team working on the SIPEX project (AAS 3026) in the East Antarctic sector in September/October 2007. Data include Chlorophyll a, salinity, temperature, sea-ice thickness, ice texture analysis, macro-nutrients (nitrate, phosphate, silicate), oxygen stable isotopes, POC and DOC, EPS, iron. This work was completed as part of AAS (ASAC) project 3026. See the parent metadata record (ASAC_3026) for more information.