Topic
 

environment

214 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 214
  • Categories  

    Temperature loggers have been deployed at a range of sites statewide in waters ranging between 6 and 22m depth. From 2012, 27 sites around Tasmania are being monitored. This record shows data collected from 2004 up to December 2020. Data is still being collected (April 2023) and will be added to this collection as it becomes available.

  • Experiments were done to quantify the Total Hydrocarbon Content (THC) in water accommodated fractions (WAF) of three fuels; Special Antarctic Blend diesel (SAB), Marine Gas Oil diesel (MGO) and an intermediate grade of marine bunker Fuel Oil (IFO 180).These tests measured the hydrocarbon content in freshly decanted WAFs and the resulting loss of hydrocarbons over time when WAFs were exposed in temperature controlled cabinets at 0°C. These tests are detailed in Dataset AAS_3054_THC_WAF. The results of hydrocarbon WAF tests were used to calculate integrated concentration from measured hydrocarbon concentrations weighted to time to be used as the exposure concentrations for toxicity tests with Antarctic invertebrates. Exposure concentrations used to model sensitivity estimates were derived by calculating the time weighted mean THC between pairs of successive measurements in the 100% WAFs and dilutions to give overall exposure concentrations for each time point.These modelled concentrations integrated the loss of hydrocarbons over time, and renewal of test solutions at 4 d intervals Exposure concentrations of THC in µg/L are shown for endpoints from 24 h to 21 d

  • Depth related changes in sediment characteristics and the composition of infaunal invertebrate communities were investigated at two sites in the Windmill Islands around Casey station, East Antarctica, during the 2006/07 summer. Sediment characteristics were investigated via sediment cores (5cm deep x 5cm diameter) collected from 4 depths (7m, 11m, 17, and 22m) from each of three transects at two sites (McGrady Cove and O'Brien Bay 1). Measured sediment characteristics included grain size distribution, total organic carbon and the concentration of a range of heavy metals. This work was conducted as part of ASAC 2201 (ASAC_2201).

  • This project monitored plastics at the four-bays area on Heard Island and at Sandell Bay on Macquarie Island. It characterised plastics by infra-red spectroscopy both from the beach collection and small pieces from fur-seal stomachs and cormorant boluses. The aim was to assess human impact on the ocean by measuring plastic abundance and type.

  • This dataset contains the results of replicate experiments which measured the total hydrocarbon content (THC) in water accommodated fractions (WAFs) of three fuels; Special Antarctic Blend diesel, Marine Gas oil and intermediate fuel oil IFO 180.

  • Untreated, macerated wastewater effluent has been discharged to the sea at Davis Station since 2005, when the old wastewater treatment infrastructure was removed. This environmental assessment was instigated to guide the choice of the most suitable wastewater treatment facility at Davis. The assessment will support decisions that enable Australia to meet the standards set for the discharge of wastewaters in Antarctica in national legislation (Waste Management Regulations of the Antarctic Treaty Environmental Protection Act - ATEP) and to meet international commitments (the Madrid Protocol) and to meet Australia's aspirations to be a leader in Antarctic environmental protection. The overall objective was to provide environmental information in support of an operational infrastructure project to upgrade wastewater treatment at Davis. This information is required to ensure that the upgrade satisfies national legislation (ATEP/Waste Management Regulations), international commitments (the Madrid Protocol) and maintain the AAD's status as an international leader in environmental management. The specific objectives were to: 1. Wastewater properties: Determine the properties of discharged wastewater (contaminant levels, toxicity, microbiological hazards) as the basis for recommendations on the required level of treatment and provide further consideration of what might constitute adequate dilution and dispersal for discharge to the nearshore marine environment 2. Dispersal and dilution characteristics of marine environment: Assess the dispersing characteristics of the immediate nearshore marine environment in the vicinity of Davis Station to determine whether conditions at the existing site of effluent discharge are adequate to meet the ATEP requirement of initial dilution and rapid dispersal. 3. Environmental impacts: Describe the nature and extent of impacts to the marine environment associated with present wastewater discharge practices at Davis and determine whether wastewater discharge practices have adversely affected the local environment. 4. Evaluate treatment options: Evaluate the different levels of treatment required to mitigate and/or prevent various environmental impacts and reduce environmental risks.

  • Untreated, macerated wastewater effluent has been discharged to the sea at Davis Station since 2005, when the old wastewater treatment infrastructure was removed. This environmental assessment was instigated to guide the choice of the most suitable wastewater treatment facility at Davis. The assessment will support decisions that enable Australia to meet the standards set for the discharge of wastewaters in Antarctica in national legislation (Waste Management Regulations of the Antarctic Treaty Environmental Protection Act - ATEP) and to meet international commitments (the Madrid Protocol) and to meet Australia's aspirations to be a leader in Antarctic environmental protection. The overall objective was to provide environmental information in support of an operational infrastructure project to upgrade wastewater treatment at Davis. This information is required to ensure that the upgrade satisfies national legislation (ATEP/Waste Management Regulations), international commitments (the Madrid Protocol) and maintain the AAD's status as an international leader in environmental management. The specific objectives were to: 1. Wastewater properties: Determine the properties of discharged wastewater (contaminant levels, toxicity, microbiological hazards) as the basis for recommendations on the required level of treatment and provide further consideration of what might constitute adequate dilution and dispersal for discharge to the nearshore marine environment 2. Dispersal and dilution characteristics of marine environment: Assess the dispersing characteristics of the immediate nearshore marine environment in the vicinity of Davis Station to determine whether conditions at the existing site of effluent discharge are adequate to meet the ATEP requirement of initial dilution and rapid dispersal. 3. Environmental impacts: Describe the nature and extent of impacts to the marine environment associated with present wastewater discharge practices at Davis and determine whether wastewater discharge practices have adversely affected the local environment. 4. Evaluate treatment options: Evaluate the different levels of treatment required to mitigate and/or prevent various environmental impacts and reduce environmental risks.

  • This dataset will be comprised of measurements taken from trace metal water column samples collected during the SIPEX II Antarctic marine science voyage in 2012. In its current form no sample analysis has been performed. The dataset simply contains the log sheets for the Trace Metals Rosette (TMR) deployments as well as the output files from the TMR software (General Oceanics). Water samples for dissolved trace metal measurements were collected from the surface (15m) down to the 1000m using an autonomous intelligent rosette system (General Oceanics, USA) specially adapted for trace metal work and deployed on a Dyneema rope. The rosette was equipped with 12x10-L Niskin-1010X bottles specially modified for trace metal water sampling. This system has been successfully deployed on the RSV Aurora Australis during voyages au0703 and au0806. Care was taken to avoid any contamination from the ship and the operating personnel. Water samplers were processed aboard under an ISO class 5 trace-metal-clean laminar flow bench in to a trace-metal-clean laboratory container on the ship's trawl deck. All transfer tubes, filtering devices and sample containers were rinsed liberally with sample before final collection. Samples were then drawn through C-Flex tubing (Cole Parmer) and filtered in-line through 0.2 micron pore-size acid-washed capsules (Pall Supor membrane, Acropak 200). Filtered and unfiltered samples were collected in acid-cleaned 125ml Nalgene LDPE bottles for analysis of dissolved trace metals. Samples were also collected for the determination of stable isotopes of nitrogen and carbon. As well, filtered samples were taken for macro-nutrient analysis in the lab (2 small vials per Niskin, frozen). Regular sampling depths were as follows: 1000m, 750m, 500m, 300m, 200m, 150m, 125m, 100m, 75m, 50m, 30m, 15m. At a subset of the SIPEX II ice stations, filtered samples were also collected for Iron(II) analysis aboard the ship by Christina Schallenberg (in the trace-metal-clean laboratory container), and unfiltered samples were collected for analysis of mercury and methyl-mercury by Caitlin Gionfriddo (caitlingio@gmail.com).

  • The RSV Aurora Australis V2 – Casey Resupply and Marine Science Voyage took place from 5 December 2014 to 25 January 2015. The voyage code is v2_201415020. The principal objective of the voyage was to undertake the Casey Resupply and then conduct marine science in the Dalton Polynya and near the Mertz Glacier. A downwards looking video camera system was fitted to the CTD and operated during most casts. The system was remotely controlled and typically operated only while the CTD was near the bottom although some videos show the complete descent through the water column. The video footage for each deployment was labelled as follows: VOYAGE_DATE_TIME_SITE.MTS Where: VOYAGE = v2_201415020 DATE = YYYY-MM-DD TIME = HHMMUTC (in 24 hr time) SITE = the CTD site name (e.g. SiteA5) Details on each site, including geographic coordinates and depth, are available in the Marine Data Voyage Report. The underway data from the voyage is available here: https://data.aad.gov.au/metadata/records/201415020

  • Untreated, macerated wastewater effluent has been discharged to the sea at Davis Station since 2005, when the old wastewater treatment infrastructure was removed. This environmental assessment was instigated to guide the choice of the most suitable wastewater treatment facility at Davis. The assessment will support decisions that enable Australia to meet the standards set for the discharge of wastewaters in Antarctica in national legislation (Waste Management Regulations of the Antarctic Treaty Environmental Protection Act - ATEP) and to meet international commitments (the Madrid Protocol) and to meet Australia's aspirations to be a leader in Antarctic environmental protection. The overall objective was to provide environmental information in support of an operational infrastructure project to upgrade wastewater treatment at Davis. This information is required to ensure that the upgrade satisfies national legislation (ATEP/Waste Management Regulations), international commitments (the Madrid Protocol) and maintain the AAD's status as an international leader in environmental management. The specific objectives were to: 1. Wastewater properties: Determine the properties of discharged wastewater (contaminant levels, toxicity, microbiological hazards) as the basis for recommendations on the required level of treatment and provide further consideration of what might constitute adequate dilution and dispersal for discharge to the nearshore marine environment 2. Dispersal and dilution characteristics of marine environment: Assess the dispersing characteristics of the immediate nearshore marine environment in the vicinity of Davis Station to determine whether conditions at the existing site of effluent discharge are adequate to meet the ATEP requirement of initial dilution and rapid dispersal. 3. Environmental impacts: Describe the nature and extent of impacts to the marine environment associated with present wastewater discharge practices at Davis and determine whether wastewater discharge practices have adversely affected the local environment. 4. Evaluate treatment options: Evaluate the different levels of treatment required to mitigate and/or prevent various environmental impacts and reduce environmental risks.