Topic
 

climatologyMeteorologyAtmosphere

261 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 261
  • On every voyage of the Aurora Australis, approximately 50 onboard sensors collect data on average every 10 seconds. These data are known as the underway datasets. The type of data collected include water and air temperature, wind speeds, ship speed and location, humidity, fluorescence, salinity and so on. For the full list of available data types, see the website. These data are broadcast "live" (every 30 minutes) back to Australia and are available via the Australian Oceanographic Data Centre's portal (see the provided link). Once the ship returns to port, the data are then transferred to Australian Antarctic Division servers where they are then made available via the Marine Science Data Search system (see the provided URL). This dataset contains the underway data collected during Voyage 5 of the Aurora Australis Voyage in the 2009/10 season. Voyage Objectives: Macquarie Island resupply and personnel change-over. Voyage Leader: Andy Cianchi Deputy Voyage Leader: Mick Stapleton Underway (meteorological) data are available online via the Australian Antarctic Division Data Centre web page (or via the Related URL section).

  • This document describes the deployment of five Ice Mass Balance Buoys (IMBs) and two automatic weather stations. These were primarily deployed on floes 2012103 and 20121029, as well as on helicopter flights (refer to buoy metadata for these). IMBs are labelled WHOI-1 to WHOI-6. WHOI-1 was not deployed and WHOI-3 and WHOI-5 failed and were recovered. TAS-2 was exchanged for WHOI-1 Deployments (successful): TAS-2 deployed on helo flight 20 km from ship WHOI-4 deployed on helo flight 20 km from ship WHOI-6 Deployed next to AWS-1 on ice station 1013 on 11/04 WHOI-2 Deployed next to AWS-2 on ice station 1029 on 11/01 Each AWS record air temp, relative humidity, wind speed and direction, total incident short wave, snow depth, GPS position and snow particles near ground level and at about 1m height. AWS-1 deployed on 1013 AWS-2 deployed on 1029 IMBs record GPS position and temperature in air,snow,ice, and ocean. Sensors also have a heating mode that permit determination of media they are embedded in so that snow and ice thickness can be determined. REFER TO MAKSYM LOGBOOK SCANS FOR MORE DETAILS

  • On every voyage of the Aurora Australis, approximately 50 onboard sensors collect data on average every 10 seconds. These data are known as the underway datasets. The type of data collected include water and air temperature, wind speeds, ship speed and location, humidity, fluorescence, salinity and so on. For the full list of available data types, see the website. These data are broadcast "live" (every 30 minutes) back to Australia and are available via the Australian Oceanographic Data Centre's portal (see the provided link). Once the ship returns to port, the data are then transferred to Australian Antarctic Division servers where they are then made available via the Marine Science Data Search system (see the provided URL). This dataset contains the underway data collected during Voyage 4 of the Aurora Australis Voyage in the 2017/18 season. Purpose of voyage: Macquarie Island over water resupply and refuel, personnel deployment/retrieval and approved project support. Voyage Leader: Mr Andy Cianchi Deputy Voyage Leader: Mr Justin Hallock Underway (meteorological) data are available online via the Australian Antarctic Division Data Centre web page (or via the Related URL section).

  • This dataset contains the underway data collected during the Aurora Australis Voyage 1 2004-05. This voyage was a marine science voyage, but also went to Casey station before returning to Hobart. Underway (meteorological) data are available online via the Australian Antarctic Division Data Centre web page (or via the Related URL section).

  • On every voyage of the Aurora Australis, approximately 50 onboard sensors collect data on average every 10 seconds. These data are known as the underway datasets. The type of data collected include water and air temperature, wind speeds, ship speed and location, humidity, fluorescence, salinity and so on. For the full list of available data types, see the website. These data are broadcast "live" (every 30 minutes) back to Australia and are available via the Australian Oceanographic Data Centre's portal (see the provided link). Once the ship returns to port, the data are then transferred to Australian Antarctic Division servers where they are then made available via the Marine Science Data Search system (see the provided URL). This dataset contains the underway data collected during Voyage 1 of the Aurora Australis Voyage in the 2009/10 season. Voyage Objectives : Davis resupply and refuel. Mawson winter/summer personnel in. Voyage Leader: Karin Beaumont Deputy Voyage Leader: Sharon Labudda Underway (meteorological) data are available online via the Australian Antarctic Division Data Centre web page (or via the Related URL section).

  • On every voyage of the Aurora Australis, approximately 50 onboard sensors collect data on average every 10 seconds. These data are known as the underway datasets. The type of data collected include water and air temperature, wind speeds, ship speed and location, humidity, fluorescence, salinity and so on. For the full list of available data types, see the website. These data are broadcast "live" (every 30 minutes) back to Australia and are available via the Australian Oceanographic Data Centre's portal (see the provided link). Once the ship returns to port, the data are then transferred to Australian Antarctic Division servers where they are then made available via the Marine Science Data Search system (see the provided URL). This dataset contains the underway data collected during Voyage 3 of the Aurora Australis Voyage in the 2009/10 season. Voyage Objectives: Mawson resupply. Davis light essential. Voyage Leader: Rob Bryson Deputy Voyage Leader: Simon Langdon Underway (meteorological) data are available online via the Australian Antarctic Division Data Centre web page (or via the Related URL section).

  • On every voyage of the Aurora Australis, approximately 50 onboard sensors collect data on average every 10 seconds. These data are known as the underway datasets. The type of data collected include water and air temperature, wind speeds, ship speed and location, humidity, fluorescence, salinity and so on. For the full list of available data types, see the website. These data are broadcast "live" (every 30 minutes) back to Australia and are available via the Australian Oceanographic Data Centre's portal (see the provided link). Once the ship returns to port, the data are then transferred to Australian Antarctic Division servers where they are then made available via the Marine Science Data Search system (see the provided URL). This dataset contains the underway data collected during Voyage 1 of the Aurora Australis Voyage in the 2010/11 season. Voyage Objectives: Davis Resupply and Changeover. Leader: Dr. Karin Beaumont Deputy Leader: Miss. Sharon Labudda VM Trainee: Mr. Lance Bagster Underway (meteorological) data are available online via the Australian Antarctic Division Data Centre web page (or via the Related URL section).

  • On every voyage of the Aurora Australis, approximately 50 onboard sensors collect data on average every 10 seconds. These data are known as the underway datasets. The type of data collected include water and air temperature, wind speeds, ship speed and location, humidity, fluorescence, salinity and so on. For the full list of available data types, see the website. These data are broadcast "live" (every 30 minutes) back to Australia and are available via the Australian Oceanographic Data Centre's portal (see the provided link). Once the ship returns to port, the data are then transferred to Australian Antarctic Division servers where they are then made available via the Marine Science Data Search system (see the provided URL). This dataset contains the underway data collected during Voyage 3 of the Aurora Australis Voyage in the 2010/11 season. Voyage Objectives: Mawson Resupply, Davis light essential Cargo deployment. Leader: Mr. Andy Cianchi Deputy Leader: Ms. Margaret Lindsay VM Trainee: Ms. Kate O'Malley Underway (meteorological) data are available online via the Australian Antarctic Division Data Centre web page (or via the Related URL section).

  • Metadata record for data from ASAC Project 2500 See the link below for public details on this project. Public Weekly fast-ice and snow thicknesses from an ongoing long-term time-series together with meteorological data will be used to analyse ice-atmosphere interactions. Interannual changes will be related to climate effects. Various sites at each location will be sampled to resolve the influence of oceanic forcing on the fast-ice growth. Project objectives: Landfast sea ice (fast ice) forms on the near-coastal ocean off each of the three Australian Antarctic stations each autumn. At Mawson and Davis stations this ice cover is generally stable, increasing in thickness throughout the winter to reach its maximum thickness in October or November before decaying and eventually breaking out in late spring or summer [Heil and Allison, 2002a]. At Casey, the third Australian station, the fast-ice cover is very unstable and not suitable for the study proposed here. The fast ice at the proposed measuring sites is stationary all through the austral winter. There is no contribution due to mechanical processes (rafting or ridging) on the thickness evolution of the fast ice at the measuring sites [Heil, 2001]. Its growth and decay, and the annual maximum thickness depend primarily on thermodynamic processes [Heil et al., 1996], which are forced by energy and moisture exchanges at the atmosphere-ice interface, the thickness of the snow cover, and the thermal energy supplied to the underside of the ice from the ocean. Starting in the mid 1950s measurements of the fast-ice thickness and snow cover are available for individual years at Mawson and Davis stations. After quality control the combined record for Mawson includes data from 27 seasons; the Davis record includes 20 seasons [Heil and Allison, 2002a]. However, significant gaps exist in these historic records. The scientific value of a continuous record of fast-ice thickness as a climatic indicator has been recognised and as a consequence the fast-ice and snow measurements at Davis and Mawson have been accepted into the State of the Environment (SOE) reporting scheme by the Australian Antarctic Division. Data from ANARE fast-ice measurements have been included in scientific research (e.g., Mellor [1960], Allison [1981], Heil et al. [1996], or Heil and Allison [2002a]). For example, Heil et al. [1996] designed an inverse 1-dimensional thermodynamic sea-ice model and used historic fast-ice data from Mawson together with meteorological observations to derive the seasonal and interannual variability of the oceanic heat flux at the underside of the fast ice. They showed that the interannual variability identified from the fast-ice data was in agreement with changes in the water-mass properties observed upstream of the fast-ice site. Using the historic data together with data from ongoing measurements this project aims to quantify the local-scale interactions between atmosphere and fast ice, to derive the relative impact of oceanic forcing on the fast-ice evolution, to estimate the small-scale spatial variability of the fast-ice growth, and to explore the connection between fast-ice changes and climate change. In particular we aim: - to extend previous analysis from records of fast-ice observations for Mawson and Davis stations; - to exactly determine the growth-melt cycle of East Antarctic fast ice and its modifications due to changing environmental conditions; - to derive the statistical variability of the fast-ice evolution relative to atmospheric and oceanic forcing; - to evaluate the suitability of fast ice as indicator of changes in the Antarctic environment; - to determine the spatial coherence of fast-ice properties. Contribution of this research to achieving the relevant milestones contained in the Strategic Plan: - Contributions to Key Scientific Output 3: This research aims to derive an assessment of the links between fast-ice variability and Southern Hemisphere environmental conditions from in-situ observations. The annual maximum ice thickness, and the date at which this maximum thickness is reached, reflect the integrated conditions of the local atmospheric and oceanic parameters [Heil, in prep.]. The fast-ice measurements together with concurrent meteorological (and oceanic) observations will allow us to study the direct links of variability in the sea-ice thermodynamics to changes in the Southern Hemisphere atmospheric conditions ("weather" in KSO 3.1). This knowledge will aid our understanding of the interannual and long-term variability of the drifting sea ice, as it will allow us to separate thermodynamic effects from dynamic effects [Heil et al., 1998]. Research outcomes from this study will aid the parameterisation of thermodynamic sea-ice processes in coupled climate models, and will provide an outlook towards statistical parameterisation of fast-ice characteristics within numerical models. - Contributions to Key Scientific Output 4: Using historic data and ongoing measurements this project seeks to build an accurate and ongoing record of measurements of fast-ice and snow properties for the monitoring and detection of change in Antarctic and Southern Ocean climate. Changes identified in the fast-ice thickness or in the occurrence of the annual maximum ice thickness are due to changes in either oceanic or atmospheric heat and/or moisture transfer. Using fast-ice measurements from locations around the Antarctic continent in combination with large-scale atmospheric (and oceanic) data the external impact on the sea ice can be extrapolated. Historic climatologies of interannual variability will be updated and extended. These climatologies will be available to expedition operations, scientific research, etc. Assessment basis: * Completion of field work/primary scientific activity: The requirements of data collection for this project are in line with indicator No. 43 "Fast ice thickness at Davis and Mawson" of the State of the Environment (SOE) reporting scheme. Weekly measurements of fast-ice and snow thicknesses are required for the SOE scheme as well as for this project. Additional data on the freeboard of the ice are easily and quickly obtained during the standard measurements [Heil and Allison, 2002b]. It is worthwhile to emphasise the requirement of a long-term commitment for the field measurements in order to obtain meaningful and statistically significant records of fast-ice observations. * Completion of analysis: The evaluation of individual growth-decay seasons will be undertaken once all fast-ice data as well as all required auxiliary data (mainly meteorological measurements) are available to the CI. Where available, opportunistic oceanographic data will be acquired as part of related research projects. Analysis to assess the interaction between fast ice, atmosphere and ocean will be carried out for each growth-decay season. This will include numerical modelling of the thermodynamic processes in fast-ice growth and decay. For years, when measurements of all external forcing fields (oceanic and atmospheric) have been collected, the parameterisations of the thermodynamic model can be evaluated by comparing the model results with the observed fast-ice thickness and growth rates. Following Heil et al. [1996] the thermodynamic model can be reconfigured for use in the inverse mode, using atmospheric and fast-ice data to calculate the oceanic heat flux at the underside of the ice. Long-term records of changes in the oceanic heat flux are not available and this inverse method (driven with data derived from meteorological and fast-ice measurements) will be able to contribute to our understanding of coastal oceanography by using several measuring sites within a small area. Analysis of the interannual variability of the fast ice and its response to changing environmental conditions will be carried out on the long-term data record. The data will be analysed for long-term signals, and will be evaluated for their statistical significance. * Publication of results: Scientific findings will be written up and submitted for publication as they arise. Publications in high-impact international journals are expected about every 2 years.

  • Ozone depletion over Antarctica increases UVB irradiances reaching the Earth's surface in the region. Marine microbes, that support the Antarctic food web and play an integral part in carbon cycling, are damaged by UVB. This research determines Antarctic UV climate, biological responses to UV from the molecular to community level, and combines these elements to predict UV-induced changes in Antarctic marine microbiology. A season of field work was undertaken over November and December 1994 based from Davis Station with the intention of making field measurements of ultraviolet radiation in the fast ice environment, as well as some of the lakes in the Vestfold Hills. Instrumentation The instrument for the measurements was a Macam spectral radiometer, owned by Geography and Environmental Studies, University of Tasmania. Field personnel were Dr Kelvin Michael (IASOS) and Mr Michael Wall (Honours student, Geography and Environmental Studies, UTas). The radiometer was equipped with a 25-metre quartz light pipe, with a cosine sensor attachment at the end. To make a measurement of ultraviolet irradiance, the sensor would be oriented so that its sensing surface was horizontal, and it would collect light which was then transmitted along the light pipe to the radiometer - a suitcase-sized unit which ran on battery power in the field. The radiometer was encased in a wooden box lined with polystyrene foam to provide protection from the elements and heat insulation. The radiometer was controlled via a laptop PC and the data were stored on the hard disk of the PC. Measurements Measurements of the attenuation of ultraviolet and visible radiation as a function of wavelength in water were made at the ice edge and lake measurement sites. At the ice edge, the light pipe was spooled over a wheel and lowered to preset depths (typically 1,2,4,8,16 and 32 m below the water surface). On a lake, a 25-cm augur hole was drilled, and the light pipe was lowered by hand to various depths, the exact depths chosen depended on the depth of the lake. Where the lake ice conditions permitted, a frame was lowered through the hole and used to lever the light pipe against the underside of the ice and a measurement of the ultraviolet and visible transmission of the sea ice was collected. In all cases, measurements of the ultraviolet and visible surface irradiance were collected before and/or after the sub-surface measurements. When the sky conditions were sufficiently clear, the direct and diffuse components of the ultraviolet and visible irradiance values were estimated, via the use of a shading apparatus. This would ensure that the radiometer would measure the diffuse component of the radiation field, allowing the direct component to be estimated by subtraction of the diffuse from the global (unshaded) measurement. On some occasions, the upwelling irradiance from the snow or ice surface was also measured, providing information on the spectral albedo of the surface. At each measurement, spectral irradiance values were generally collected for two spectral ranges: UV-B (280 - 400 nm, in 1-nm steps) and visible (400 - 700 nm, in 5-nm steps). In some cases, the wavelength boundaries were different - eg 280 - 350 nm for the UV-B, or 550 - 680 nm in the visible (corresponding to channel 1 of the NOAA AVHRR sensor). The data were stored by the PC as raw data files. The names of these files are automatically defined from the time on the logging PC as 'hhmmss.dti'. Note that the PC was operating on Australian Eastern Summer Time, 4 hours ahead of DLT. These data files were later read into Excel spreadsheets for manipulation. See the linked report for further information. The measurements are all in units of watts per metre squared per nanometre (Wm^-2 nm_-1) The heading UV-B refers to the fact that the data are collected in the ultraviolet part of the spectrum (280 - 400 nm) The heading AVHRR refers to the fact that the data are collected in the visible part of the spectrum (400 - 700 nm) The fields in this dataset are: UV Radiation Wavelength Depth AVHRR