Keyword

CEOS

1703 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 1703
  • Metadata record for data from ASAC Project 545 See the link below for public details on this project. From the abstract of the referenced paper: Blood was collected for haematological, red cell enzyme and red cell metabolic intermediate studies from 20 Southern elephant seals Mirounga leonina. Mean haematological values were: haemoglobin (Hb) 22.4 plus or minus 1.4 g/dl, packed cell volume (PCV) 54.2 plus or minus 3.8%, mean cell volume (MCV) 213 plus or minus 5 fl and red cell count (RCC) 2.5 x 10 to power 12 / l. Red cell morphology was unremarkable. Most of the red cell enzymes showed low activity in comparison with human red cells. Haemoglobin electrophoresis showed a typical pinniped pattern, ie two major components. Total leucocyte counts, platelet counts, and coagulation studies were within expected mammalian limits. Eosinophil counts varied from 0.5 x 10 to power 9 / l (5%-49%), and there was a very wide variation in erythrocyte sedimentation rates, from 3 to 60mm/h.

  • Metadata record for data from ASAC Project 1119 See the link below for public details on this project. A marked bend in the Hawaiian-Emperor seamount chain supposedly resulted from a recent major reorganization of the plate-mantle system there 50 million years ago. Although alternative mantle-driven and plate-shifting hypotheses have been proposed, no contemporaneous circum-Pacific plate events have been identified. We report reconstructions for Australia and Antarctica that reveal a major plate reorganization between 50 and 53 million years ago. Revised Pacific Ocean sea-floor reconstructions suggest that subduction of the Pacific-Izanagi spreading ridge and subsequent Marianas/Tonga-Kermadec subduction initiation may have been the ultimate causes of these events. Thus, these plate reconstructions solve long-standing continental fit problems and improve constraints on the motion between East and West Antarctica and global plate circuit closure.

  • A geomorphology map of the Australasian seafloor was created as a Geographic Information System layer for the study described in Torres, Leigh G., et al. "From exploitation to conservation: habitat models using whaling data predict distribution patterns and threat exposure of an endangered whale." Diversity and Distributions 19.9 (2013): 1138-1152. The geomorphology map was generated using parameters derived from the General Bathymetric Chart of the World (GEBCO 2008, http://www.gebco.net/), with 30 arc-second grid resolution. Geomorphology features were delineated manually with a consistent spatial resolution. Each feature was assigned a primary attribute of depth zone and a secondary attribute of morphological feature. The following feature classes are defined: shelf, slope, rise, plain, valley, trench, trough, basin, hills(s), mountains(s), ridges(s), plateau, seamount. Further information (methods, definitions and an illustration of the geomorphology map) is provided in Appendix S2 of the paper which is available for download (see related URLs).

  • During the ADBEX III voyage, many samples were taken of the sea ice and snow. These samples were analysed to determine water density, with the results recorded in a physical note book that is archived at the Australian Antarctic Division. Logbook(s): - Glaciology ADBEX III Water Density Results - Glaciology ADBEX III Oxygen Isotope Sample Record

  • The dataset contains boundaries of nest areas of surface nesting flying seabirds at numerous breeding sites across Prydz Bay, Antarctica. The sites are at islands in the Rauer Group, the Svenner Islands and two islands (Bluff Island and Gardner Island) off the Vestfold Hills. The boundary data were obtained from aerial photos of slopes where flying seabirds had been previously observed. The aerial photos were taken on 1 December 2017. Marcus Salton and Kim Kliska conducted the aerial photography and delineated the GIS boundaries representing the nesting areas. The database of potential Adelie penguin breeding habitat as described by the metadata record 'Sites of potential habitat for breeding Adelie penguins in East Antarctica' (http://data.aad.gov.au/metadata/records/AAS_4088_Adelie_Potential_Habitats) was used to associate flying seabird nest areas to a particular island and to structure how the boundaries are stored. The Adelie penguin breeding site database has a unique identifying code for every island in East Antarctica, and the islands are aggregated into spatial sub-groups and then spatial groups. The file structure in which the boundaries are stored has a combination of ‘island’, ‘sub-group’ and ‘spatial group’ (or region) at the top level (eg VES_SG_10 contains all boundaries in spatial group VES (Vestfold Hills and islands) and sub-group 10). Within each sub-group folder are folders for each island where photos were taken (eg IS_72276 is Gardner Island in the VES_SG_10 group). The data is comprised of: (i) a polygon shapefile for each island on which flying bird nest areas were observed; and (ii) a single polygon shapefile for each of Rauer Group, Svenner Islands and Vestfold Hills in which the polygons in (i) are combined. The polygons in the shapefiles have a Type attribute with values ranging from A to E. A = Nests present B = Searched and no nests present C = Nests or salt stains (the investigators were unable to decide whether what they were seeing was nests or salt stains) D = Snow cover E = Not searched

  • This dataset is daily passive microwave-derived Advanced Microwave Scanning Radiometer 2 (AMSR2) Antarctic sea ice motion dataset, which is the version of rectified two problems exist in Kimura et al. (2013) sea ice motion product, with ascending (ASC), descending (DES) and combined datasets, which format is DAT file. It is produced at 60×60 km resolution on a regular 127×134 grid covering the entire Southern Ocean (40°~ 90° S, -180°~180° E), for the period of 2017-05-20 to 2017-11-26 (186 days) and 2018-04-08 to 2018-08-20 (135 days). These were calculated by applying the MCC method to 36 GHz, 10 km resolution AMSR2 Level-3 36 GHz TB images (both vertical and horizontal polarization) from the Japan Aerospace Exploration Agency (JAXA). Included datasets: latitude - description: latitude of each gridded pixel - dimensions: 2 - size: [127, 134] longitude - description: longitude of each gridded pixel - dimensions: 2 - size: [127, 134] u_weddell - description: daily ASC, DES and combined u component of sea ice velocity on each pixel, from 2018-04-08 to 2018-08-20 covered entire central Weddell Sea buoy trajectory time-span, 135 days in total. - dimensions: 4 - size: [127, 134, 135, 3] ([x coordinate, y coordinate, days, ASC/DES/combined]) v_weddell - description: daily ASC, DES and combined v component of sea ice velocity on each pixel, from 2018-04-08 to 2018-08-20 covered entire central Weddell Sea buoy trajectory time-span, 135 days in total. - dimensions: 4 - size: [127, 134, 135, 3] ([x coordinate, y coordinate, days, ASC/DES/combined]) u_ross - description: daily ASC, DES and combined u component of sea ice velocity on each pixel, from 2017-05-20 to 2017-11-26 covered entire Ross Sea buoy trajectory time-span, 186 days in total. - dimensions: 4 - size: [127, 134, 186, 3] ([x coordinate, y coordinate, days, ASC/DES/combined]) v_ross - description: daily ASC, DES and combined v component of sea ice velocity on each pixel, from 2017-05-20 to 2017-11-26 covered entire Ross Sea buoy trajectory time-span, 186 days in total. - dimensions: 4 - size: [127, 134, 186, 3] ([x coordinate, y coordinate, days, ASC/DES/combined]) Study domain: 40°~ 90° S, -180°~180° E Time-scale: 24 h (for ASC and DES datasets) and 39 h (for combined dataset). Time period: from 2017-05-20 to 2017-11-26 (186 days) and from 2018-04-08 to 2018-08-20 (135 days). Variables and geographic projection detail are saved in the dataset as Readme.txt

  • The dataset contains boundaries of Cape petrel nesting areas at numerous breeding sites on islands off the Vestfold Hills, Antarctica. Boundaries of nesting sites were obtained from aligning ground observations and photographs from land or the sea-ice adjacent to the breeding sites onto maps of islands in the region. The observations were made and the photographs taken between 18 and 30 November 2017. Marcus Salton and Kim Kliska made the ground observations, took the photographs and delineated the GIS boundaries representing the nesting areas. The data is a polygon shapefile with each polygon designated Type A or Type B. Type A indicates nests present. Type B indicates this area was searched and no nests were present. Also included are three images showing the Type A polygons and the associated nest counts. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • This dataset is a time series of sea ice freeboard proxy estimation based on ASCAT C-band backscatter measurements. File format is unformatted binary, with each file 632*664 pixels, and 32 bits per pixel (floating point). Two datasets are presented here, as detailed in University of Tasmania Honours thesis by Nicola Ramm: "unmasked", i.e., no attempt to mask multiyear and marginal sea ice, and "masked", where these are masked based on backscatter. The grid used by this dataset is described here: https://nsidc.org/data/polar-stereo/ps_grids.html The methods are described in an honours thesis by Nicola Ramm, University of Tasmania.

  • This parameter set was developed to provide a plausible implementation for the ecological model described in Bates, M., S Bengtson Nash, D.W. Hawker, J. Norbury, J.S. Stark and R. A. Cropp. 2015. Construction of a trophically complex near-shore Antarctic food web model using the Conservative Normal framework with structural coexistence. Journal of Marine Systems. 145: 1-14. The ecosystem model used in this paper was designed to have the property of structural coexistence. This means that the functional forms used to describe population interactions in the equations were chosen to ensure that the boundary eigenvalues of every population were all always positive, ensuring that no population in the model can ever become extinct. This property is appropriate for models such as this that are implemented to model typical seasonal variations rather than changes over time. The actual parameter values were determined by searching a parameter space for parameter sets that resulted in a plausible distribution of biomass among the trophic levels. The search was implemented using the Boundary Eigenvalue Nudging - Genetic Algorithm (BENGA) method and was constrained by measured values where these were available. This parameter set is provided as an indicative set that is appropriate for studying the partitioning of Persistent Organic Pollutants in coastal Antarctic ecosystems. It should not be used for predictive population modelling without independent calibration and validation.

  • Access database containing biological and environmental data collected by the Australian Antarctic Division, Human Impacts Benthic Biodiversity group.