Topic
 

oceans

1749 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 1749
  • The Davis Aerodrome Project (DAP) collected a range of environmental survey data over several field seasons to support a comprehensive environmental assessment of the proposed aerodrome. This data includes flora, fauna, soils, lake ecosystem, nearshore, marine, air quality and meteorological information which has been collected by a number of different methods, and extends across the current Davis Station, proposed aerodrome and supporting infrastructure footprint (Ridge Site), previous sites considered for the aerodrome (Heidemann Valley, Adams Flat), as well as locations across the Vestfold Hills away from any of the proposed developments.(this text is standard for all DAP datasets being added to the AADC). This dataset contains short-term nearshore marine current profile data collected to inform environmental assessment processes related to the Australian Antarctic Division’s DAP and Davis Masterplan projects. Eight current meter deployments were undertaken across six sites in the nearshore marine environment in the vicinity of Davis Research station. Deployment periods ranged from three days (3 x 24hr tide cycle) to two weeks. Sites were selected based on the location of previous sampling activity (CM1-5) and sites of interest to Davis Aerodrome and Davis Masterplan projects with regard to proposed future developments in the area. A second deployment was undertaken at two key sites to increase the sampling interval at each. Data was collected using a Nortec Aquadopp Profiler 1 MHz. The same instrument was used to collect current profiles at all sites. The instrument was deployed through a 40cm hole drilled through the seaice. It was suspended horizontally in the water column (mid-way between the seafloor and the under surface of the ice) by a bridal attachment and rope secured at the surface (see figure below). A 15cm fin was attached to the base of the instrument for all deployments. In shallow locations the instrument was positioned so that it could not hit the seafloor throughout the lowest tidal cycle during the deployment. The profile interval was set to record every 900 seconds (15min) for a period of 120 seconds (2min). All instrument settings and recording details are contained in the hdr files saved in each data folder. Start and end dates and times are set out in the “current meter deployment details” spreadsheet. Temporal coverage Site No. Deployment Date Retrieval Date CM1 22/10/2021 2/22/2021 CM2 16/09/2021 19/09/2021 CM2 9/10/2021 22/10/2021 CM3 3/11/2021 12/11/2021 CM5 24/11/2021 4/11/2021 ML 8/12/2021 14/12/2021 OptionA 29/09/2021 2/10/2021 OptionA 14/12/2021 20/12/2021 Spatial coverage CM2_01_20210919 68.57399536 77.96031373 OptionA_01_20211002 68.57597253 77.96121253 CM2_02_20211022 68.57399536 77.96031373 CM1_01_20211102 68.57749077 77.95758156 CM3_01_20211112 68.57276237 77.94873464 CM5_01_20211204 68.58321738 77.9180513 ML_01_20211214 -68.58381482 77.94507546 OptionA_02_20211220 68.57585945 77.96151685

  • These data describe pack ice characteristics in the Antarctic sea ice zone. These data are in the ASPeCt format. National program: Australia Vessel: Nathaniel B. Palmer Dates in ice: 22 Mar 1995 - 21 Apr 1995 Observers: Andrew Watkins Summary of voyage track: Complicated voyage track between 146E - 169E. The fields for this dataset are: SEA ICE CONCENTRATION SEA ICE FLOE SIZE SEA ICE SNOW COVER SEA ICE THICKNESS SEA ICE TOPOGRAPHY SEA ICE TYPE RECORD DATE TIME LATITUDE LONGITUDE OPEN WATER TRACK SNOW THICKNESS SNOW TYPE SEA TEMPERATURE AIR TEMPERATURE WIND VELOCITY WIND DIRECTION FILM COUNTER FRAME COUNTER FOR FILM VIDEO RECORDER COUNTER VISIBILITY CODE CLOUD WEATHER CODE COMMENTS

  • This dataset contains in-situ atmospheric ozone mixing ratios observed during SIPEX 2. Ozone Monitor Instrument Description: Commercial dual cell ultraviolet ozone analyser: Thermoelectron Model 49C. Calibration to a traceable ozone standard prior to and after the voyage. Ozone loss in inlet and on filter quantified and negligible. Instrument Setup: This instrument is sampling from its own Teflon sample air inlet secured to the front port side railing of the Monkey Deck. Air samples are drawn through a 30m quarter inch Teflon tube then through an inline particle filter before being entering the instrument located in the Met-Lab. Each week, a 30 minute instrument zero is performed by inserting an inline scrubber which catalyses ozone destruction. In the current position, wind from the aft of the ship will blow ship exhaust over the inlet, causing fluctuating low ozone values. Use the 2D anemometer and mercury measurements made on "Ned Kelly" in the mercury data file to filter for wind direction versus heading, also the mercury data itself is indicative of sampling ship emissions. The files included are in csv format. Files are named as per the date they were created. Data continued to log to the most recent file until data collection stopped. There is a "Long" and a "Normal" file for each set. The "Long" contains instrument parameters logged every hour, and the "Normal" contains minute average ozone concentrations.

  • These data describe pack ice characteristics in the Antarctic sea ice zone. These data are in the ASPeCt format. National program: United States Vessel: Nathaniel B. Palmer Dates in ice: 07 May 1998 - 11 Jun 1998 Observers: Martin Jeffries, others Summary of voyage track: 7/5 Ice edge at approx. 67S, 180 7-22/5 South along 180 to Ross ice shelf at approx 78S 22-27/5 West into Terra Nova Bay 28/5 - 11/6 Zig zag track to NE through Ross Sea 11/6 Ice edge at approx. 66S, 175W The fields in this dataset are: SEA ICE CONCENTRATION SEA ICE FLOE SIZE SEA ICE SNOW COVER SEA ICE THICKNESS SEA ICE TOPOGRAPHY SEA ICE TYPE RECORD DATE TIME LATITUDE LONGITUDE OPEN WATER TRACK SNOW THICKNESS SNOW TYPE SEA TEMPERATURE AIR TEMPERATURE WIND VELOCITY WIND DIRECTION FILM COUNTER FRAME COUNTER FOR FILM VIDEO RECORDER COUNTER VISIBILITY CODE CLOUD WEATHER CODE COMMENTS

  • This dataset contains ice motion observations made under the Australian Antarctic Program, projects 4593 and 4506. Data was obtained using two open-source ice motion loggers, hereafter ice buoys. Two ice buoys were deployed on landfast ice just north of the Swain Group, Antarctica (66.2 degr. S, 110.6 degr. E), on 13 October 2020. Instruments were retrieved on 10 November 2020. The ice buoys measure motion in 9-degrees-of-freedom at 10Hz using a VectorNAV VN-100 IMU, with an accuracy of O(mm) for short waves and O(cm) for long waves. Both instruments also record their geographical location through GPS. Full time series of their motion is processed on board and summaries are send through Iridium. Wave spectra and GPS coordinates were transmitted roughly every 4 hours. The dataset comprises the raw data measured by the two ice buoys, we have referred to them as AAD_17 and AAD_18 for administrative reasons. Data output for each buoy is: A = vertical acceleration (mean subtracted) (m/s^2); P = pitch (degrees); R = roll motion (degrees); z = surface elevation (m); t = UTC time (Matlab ‘datenum’ format, i.e., days since year 0000); lat = latitude; lon = longitude. The geographical coordinates ‘lat’ and ‘lon’ are in degrees.

  • These data describe pack ice characteristics in the Antarctic sea ice zone. These data are in the ASPeCt format. National program: Russia Vessel: Mikhail Somov Dates in ice: 12 Feb 1981 - 17 Feb 1981 Observers: Unknown Translation to ASPeCt format: Vladimir Smirnov Summary of voyage track: 12/2 Ice edge at approx. 73S, 140W 12-13/2 From ice edge to Russkaya (136W) 16-17/2 From Russkaya to ice edge at approx. 73S, 139W The column headings in this datasets are: SEA ICE CONCENTRATION SEA ICE FLOE SIZE SEA ICE SNOW COVER SEA ICE THICKNESS SEA ICE TOPOGRAPHY SEA ICE TYPE RECORD DATE TIME LATITUDE LONGITUDE OPEN WATER TRACK SNOW THICKNESS SNOW TYPE SEA TEMPERATURE AIR TEMPERATURE WIND VELOCITY WIND DIRECTION FILM COUNTER FRAME COUNTER FOR FILM VIDEO RECORDER COUNTER VISIBILITY CODE CLOUD WEATHER CODE COMMENTS

  • These data describe pack ice characteristics in the Antarctic sea ice zone. These data are in the ASPeCt format. National program: Australia Vessel: Aurora Australis Dates in ice: 05 Nov 1998 - 18 Dec 1998 Observers: Matt Paget Summary of voyage track: 5/11 Ice edge at approx. 60S, 113E 5-7/11 Ice edge to Casey 8-18/11 Casey to Davis (conducting survey of pack ice seals) 22-23/11 From Davis west to 74E 24-26/11 No obs - flying operations 27-30/11 Vicinity of 74E 1-12/11 No obs - ship stopped in ice due to propeller damage 13-18/2 Towed to ice edge by Shirase, ice obs conducted. The fields in this dataset are: SEA ICE CONCENTRATION SEA ICE FLOE SIZE SEA ICE SNOW COVER SEA ICE THICKNESS SEA ICE TOPOGRAPHY SEA ICE TYPE RECORD DATE TIME LATITUDE LONGITUDE OPEN WATER TRACK SNOW THICKNESS SNOW TYPE SEA TEMPERATURE AIR TEMPERATURE WIND VELOCITY WIND DIRECTION FILM COUNTER FRAME COUNTER FOR FILM VIDEO RECORDER COUNTER VISIBILITY CODE CLOUD WEATHER CODE COMMENTS

  • The Australian Antarctic Division (AAD) has been collecting hydroacoustic data from its ocean going vessels for a number of years. This collection represents all hydroacoustic data gathered since 1990. The data are stored on the AAD Storage Area Network (SAN), and as such are only directly accessible by AAD personnel. Currently a very large volume of data are stored (greater than 2 TB), hence distribution of these data are logistically feasible really only for people with access to the SAN. As well as data, a large amount of documentation is provided - including methods used to collect these data, as well as any products resulting from these data (e.g. papers, reports, etc). In the past, these data have been collected under several ASAC projects, ASAC 357 (Hydroacoustic Determination of the Abundance and Distribution of Krill in the Region of Prydz Bay, Antarctica) and ASAC 1250 (Krill flux, acoustic methodology and penguin foraging - an integrated study) - ASAC_357 and ASAC_1250. As of 2019-12-19 the folders present in the acoustics data directory are: 1990-05_Aurora-Australis_HIMS 1991-01_Aurora-Australis_AAMBER2 1991-10_Aurora-Australis_WOCE91 1992-01_Aurora-Australis_Calibration_Great-Taylors-Bay 1993-01_Aurora-Australis_Calibration_Port-Arthur 1993-01_Aurora-Australis_KROCK 1993-02_Aurora-Australis_Calibration_Mawson 1993-03_Aurora-Australis_WOES-WORSE 1993-08_Aurora-Australis_Calibration_Port-Arthur 1993-08_Aurora-Australis_THIRST 1994-01_Aurora-Australis_SHAM 1994-12_Aurora-Australis_WOCET 1995-02_Aurora-Australis_Calibration_Casey 1995-07_Aurora-Australis_HI-HO_HI-HO 1996-01_Aurora-Australis_BROKE 1996-01_Aurora-Australis_Calibration_Port-Arthur 1996-02_Aurora-Australis_Calibration_Casey 1996-08_Aurora-Australis_WASTE 1997-01_Aurora-Australis_BRAD 1997-09_Aurora-Australis_ON-ICE 1997-09_Aurora-Australis_WANDER 1997-11_Aurora-Australis_SEXY 1997-11_Aurora-Australis_V3 1997-98-050_V5 1998-02_Aurora-Australis_SNARK 1998-04_Aurora-Australis_PICCIES 1998-07_Aurora-Australis_FIRE-and-ICE 1998-09_Aurora-Australis_V2 1998-10_Aurora-Australis_SEXYII 1999-01_Aurora-Australis_V5 1999-03_Aurora-Australis_STAY 1999-07_Aurora-Australis_Calibration_Port-Arthur 1999-07_Aurora-Australis_IDIOTS 1999-10_Aurora-Australis_V2 1999-11_Aurora-Australis_V4 2000-01_Aurora-Australis_V5 2000-02_Aurora-Australis_V6 2000-10_Aurora-Australis_Calibration_Port-Arthur 2000-11_Aurora-Australis_V1 2000-12_Aurora-Australis_KACTAS 2001-01_Aurora-Australis_Calibration_Mawson 2001-02_Aurora-Australis_Calibration_Davis 2001-10_Aurora-Australis_CLIVAR 2002-01_Aurora-Australis_LOSS 2002-09_Aurora-Australis_V1 2002-10_Aurora-Australis_Calibration_Port-Arthur 2003-01_Aurora-Australis_KAOS 2003-02_Aurora-Australis_Calibration_Mawson 2003-03_Aurora-Australis_Off-charter 2003-09_Aurora-Australis_ARISE 2003-09_Aurora-Australis_Calibration_NW-Bay 2003-11_Aurora-Australis_V2 2003-12_Aurora-Australis_HIPPIES 2004-02_Aurora-Australis_V7 2004-05_AAD_Lab-testing 2004-06_Aurora-Australis_Off-charter 2004-10 2004-10_Aurora-Australis_Calibration_NW-Bay 2004-10_Aurora-Australis_V1 2004-11_Aurora-Australis_V2 2004-11_Howard-Burton_NW-Bay-testing 2004-12_Aurora-Australis_ORCKA 2004-12_Howard-Burton_NW-Bay-testing 2005-02_Aurora-Australis_V5 2005-04_Howard-Burton_Bruny-Island-testing 2005-11_Aurora-Australis_Calibration_Port-Arthur 2005-11_Aurora-Australis_V2 2006-01_Aurora-Australis_BROKE-West 2006-02_Aurora-Australis_Calibration_Mawson 2006-03_Aurora-Australis_V5 2006-09_Aurora-Australis_V1 2006-12_Aurora-Australis_V2 2007-01_Aurora-Australis_SAZ-SENSE 2007-04_Aurora-Australis_V5 2007-08_Aurora-Australis_SIPEX 2011_10_20_Aurora_Calibration 200910_Aurora-Australis_BathymetryProcessing 201803_tankExperiments 20150102_Tangaroa 200708030_Aurora-Australis_V3_CEAMARC 200708040_Aurora-Australis_V4 200708060_Aurora-Australis_V6_CASO 200809000_Aurora-Australis_VTrials 200809010_Aurora-Australis_V1 200809020_Aurora-Australis_V2 200809030_Aurora-Australis_V3 200809050_Aurora-Australis_V5 200910000_Aurora-Australis_VTrials 200910010_Aurora-Australis_V1 200910020_Aurora-Australis_V2 200910030_Aurora-Australis_V3 200910040_Aurora-Australis_V4 200910050_Aurora-Australis_V5 200910070_Aurora-Australis_VE1 201011000_Aurora-Australis_VTrials 201011002_Aurora-Australis_VE2 201011010_Aurora-Australis_V1 201011020_Aurora-Australis_V2 201011021_Aurora-Australis_VMS 201011030_Aurora-Australis_V3 201011040_Aurora-Australis_V4 201011050_Aurora-Australis_V5 201112000_Aurora-Australis_VTrials 201112001_Aurora-Australis_VE1 201112010_Aurora-Australis_V1 201112020_Aurora-Australis_V2 201112030_Aurora-Australis_V3 201112040_Aurora-Australis_V4 201112050_Aurora-Australis_V5 201112060_Aurora-Australis_V6 201213000_Aurora-Australis_VTrials 201213001_Aurora-Australis_VMS_SIPEX 201213010_Aurora-Australis_V1 201213020_Aurora-Australis_V2 201213020_Aurora-Australis_V3 201213040_Aurora-Australis_V4 201314010_Aurora-Australis_V1 201314020_Aurora-Australis_V2 201314040_Aurora-Australis_V4 201314060_Aurora-Australis_V6 201415000_AuroraAustralis-Trials 201415010-AuroraAustralis_V1 201415020_AuroraAustralis_V2 201415030_AuroraAustralis_V3 201415040_AuroraAustralis_V4 201516000-AuroraAustralis_VTrials 201516010_AuroraAustralis_V1 201516020_AuroraAustralis_V2 201516030-AuroraAustralis_V3 201617010-AuroraAustralis_V1 201617020-AuroraAustralis_V2 201617030-AuroraAustralis_V3 201617040-AuroraAustralis_V4 201718010-AuroraAustralis_V1 201718020-AuroraAustralis_V2 201718030-AuroraAustralis_V3 201718040-AuroraAustralis_V4 201819010-AuroraAustralis_V1 201819020-AuroraAustralis_V2 201819030-AuroraAustralis_V3 201819040-AuroraAustralis_V4 201920000-AuroraAustralis_VTrials 201920010-AuroraAustralis_V1 201920011-AuroraAustralis_VMI

  • These data describe pack ice characteristics in the Antarctic sea ice zone. These data are in the ASPeCt format. National program: United States Vessel: Nathaniel B. Palmer Dates in ice: 24 Aug 1993 - 24 Sep 1993 Observers: Martin Jeffries, Tony Worby, Kim Morris, Willy Weeks, Chris Fritsen, Ricardo Jana, Tim Qackenbush, Chua Teong Sek Summary of voyage track: 24/8 Ice edge at approx. 70S, 83W 24/8 - 24/9 Series of transects through the pack ice 24/9 Ice edge at approx 66S, 110W The fields for this dataset are: SEA ICE CONCENTRATION SEA ICE FLOE SIZE SEA ICE SNOW COVER SEA ICE THICKNESS SEA ICE TOPOGRAPHY SEA ICE TYPE RECORD DATE TIME LATITUDE LONGITUDE OPEN WATER TRACK SNOW THICKNESS SNOW TYPE SEA TEMPERATURE AIR TEMPERATURE WIND VELOCITY WIND DIRECTION FILM COUNTER FRAME COUNTER FOR FILM VIDEO RECORDER COUNTER VISIBILITY CODE CLOUD WEATHER CODE COMMENTS

  • Descriptions of piston core sections from the Sabrina Sea Floor Survey. Logs comprise descriptions of sediment lithologies down core with Munsell colors based on Munsell soil color chart.