LABORATORY
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
Trace metal concentrations are reported in micrograms per gram of sediment in core C012-PC05 (64⁰ 40.517’ S, 119⁰ 18.072’ E, water depth 3104 m). Each sediment sample (100-200mg) was ground using a pestle and mortar and digested following an initial oxidation step (1:1 mixture of H2O2 and HNO3 acid) and open vessel acid on a 150 degree C hotplate using 2:5:1 mixture of concentrated distilled HCl, HNO3 and Baseline Seastar HF acid. After converting the digested sample to nitric acid, an additional oxidation step was performed with 1:1 mixture of concentrated distilled HNO3 and Baseline Seastar HClO4 acid. A 10% aliquot of the final digestion was sub-sampled for trace metal analyses. Trace metal concentrations were determined by external calibration using an ELEMENT 2 sector field ICP-MS from Thermo Fisher Scientific (Bremen, Germany) at Central Science Laboratory (University of Tasmania). The following elements were analysed in either low (LR) or medium resolution (MR): Sr88(LR), Y89(LR), Mo95(LR), Ag107(LR), Cd111(LR), Cs133(LR), Ba137(LR), Nd146(LR), Tm169(LR), Yb171(LR), Tl205(LR), Pb208(LR), Th232(LR), U238(LR), Na23(MR), Mg24(MR), Al27(MR), P31(MR), S32(MR), Ca42(MR), Sc45(MR), Ti47(MR), V51(MR), Cr52(MR), Mn55(MR), Fe56(MR), Co59(MR), Ni60(MR), Cu63(MR), Zn66(MR).
-
This video is supplementary data for the publication entitled 'Internal physiology of live krill revealed using new aquaria techniques and mixed optical microscopy and optical coherence tomography (OCT) imaging techniques'. The video is high resolution microscopy video of a live krill captured in the krill containment trap placed within the water bath. File size: 1.8 GB, 32 s duration. The optical microscopy was carried out using a Leica M205C dissecting stereomicroscope with a Leica DFC 450 camera and Leica LAS V4.0 software to collect high-resolution video. The experimental krill research project is designed to focus on obtaining life history information of use in managing the krill fishery - the largest Antarctic fishery. In particular, the project will concentrate on studies into impacts of climate change on key aspects of krill biology and ecology.
-
This metadata record was created in error and a DOI assigned to it before the error was noticed. The correct metadata record is available here: https://data.aad.gov.au/metadata/records/AAS_4015_Krill_Gonad_Transcriptome with the DOI doi:10.26179/5cd3c8fec9ad8.
-
General description: The associated file contains sediment pigment data from the antFOCE project 4127. Units: all pigment data in ug/g, 0 = below detection limit of HPLC. Sample collection details: At the start and end of the antFOCE experiment, four sediment core samples were taken from inside and outside each chamber or open plot by divers. The top 1 cm of the cores was then removed and placed in the dark, first at -20ºC for 2 hours, then at -80ºC until analysis at the Australian Antarctic division. Pigment analysis Frozen samples were transported under liquid N2 to a freeze drier (Dynavac, model FD-5), in pre-chilled flasks with a small amount of liquid N2 added. Custom made plumbing fitted to the freeze drier enabled samples to be purged with N2 to prevent photo-oxidation up until solvent extraction. Prior to pigment extraction five 2 g stainless steel ball bearings were added to homogenise the freeze dried sediment. The samples were bead beaten for 1 minute (Biospec products). Subsamples (~0.05 g) were immediately transferred to cryotubes with 700 µl of dimethylformamide (DMF) for two hours. Samples were kept at -80ºC and under a safe light (IFORD 902) at all times. All pigment concentrations are standardised to sediment weight. Pigments were extracted with dimethylformamide (DMF 700 µl) over a two hour period at -20ºC. Zirconia beads, and 100 µl of Apo 8 and an internal standard were added to each sub-sample. After a two hour extraction, sub-samples were bead beaten for 20 seconds and then placed in a centrifuge with filter cartridge inserts for 14 minutes at 2500 rpm at -9ºC to separate the solvent from the sediment. The supernatant was transferred into to a vial and placed in a precooled rpHPLC autosampler. The rpHPLC system used is described in Hodgson et al. (1997). Pigment detection was at 435, 470 and 665 nm for all chlorophylls and carotenoids, with spectra from 300–700 nm being collected every 0.2 seconds. Pigment identification was carried out using a combination of rpHPLC and normal phase HPLC retention times, light absorbance spectra and reference standards (see Hodgson et al., 1997). These techniques assisted in the accurate identification of pigments and their derivatives to a molecular level and enabled several pigment derivatives to be analysed. The HPLC was previously calibrated with authentic standards and protocols outlined in SCOR (1988). Data set headers: (A)Treatment: Example code 4127_SOP7_6-1-15_PlotB_R1, = prodject code_Standard Operating Procedure(SOP) used to collect samples(see antFOCE parent file)_ Date_Chamber/plot(A,B,C,D)_replicate core within Chamber/plot(1,2,3) (B) BB carot= BB caroten, type of pigment detected by HPLC. See Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more details. (C) Chl c1 = Chlorophyll derivatives see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (D) Chl c2 = Chlorophyll derivatives see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (E) Chl c3 = Chlorophyll derivative see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (F) Chla = Chlorophyll a see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (G) Ddx =Diadinoxanthin see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information (H) dtx = Diatoxanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information (I) epi = Chlorophyll epimer pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (j) Fuc = Fucoxanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (k) Gyro2 = Gyroxanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (L) Pras = Prasanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (m) Zea = Zeaxanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (n) Date = Samples taken at the start of antFOCE experiment or at the end (o) chamber = The antFOCE chamber (A,B,C,D) (p) Treatment = The associated pH level in chambers (Acidified ~7.8, Control ~8.2) (Q) Position = Samples were taken within chambers and outside chambers (outside, inside) (r) rep= Subsamples were taken within each chamber/position (R1=replicate one, R1-R4) Spatial coordinates: 66.311500 S, 110.514216 E Dates: between 1/12/2014 and 1/3/2015 Timezone:UTC+11
-
Microscopy imaging of live Antarctic krill using a Leica M205C dissecting stereo-microscope with a Leica DFC 450 camera and Leica LAS V4.0 software. Krill were held in a custom made 'krill trap', details provided in manuscript in section eight of this form. The data are available as a single video file. These data are part of Australian Antarctic Science (AAS) projects 4037 and 4050. Project 4037 - Experimental krill biology: Response of krill to environmental change The experimental krill research project is designed to focus on obtaining life history information of use in managing the krill fishery - the largest Antarctic fishery. In particular, the project will concentrate on studies into impacts of climate change on key aspects of krill biology and ecology. Project 4050 - Assessing change in krill distribution and abundance in Eastern Antarctica Antarctic krill is the key species of the Southern Ocean ecosystem. Its fishery is rapidly expanding and it is vulnerable to changes in climate. Australia has over a decade of krill abundance and distribution data collected off Eastern Antarctica. This project will analyse these datasets and investigate if krill abundance and distribution has altered over time. The results are important for the future management of the fishery, as well as understanding broader ecological consequences of change in this important species.
-
The impact of freeze-thaw cycling on a ZVI and inert medium was assessed using duplicated Darcy boxes subjected to 42 freeze-thaw cycles. This dataset consists of particle sizing during the decommissioning process of the experiment. Two custom built Perspex Darcy boxes of bed dimensions: length 362 mm, width 60 mm and height 194 mm were filled with a mixture of 5 wt% Peerless iron (Peerless Metal Powders and Abrasive, cast iron aggregate 8-50 US sieve) and 95 wt% glass ballotini ground glass (Potters Industries Inc. 25-40 US sieve). This ratio of media was selected to ensure that most aqueous contaminant measurements were above the analytical limit of quantification (LOQ) for feed solutions at a realistic maximum Antarctic metal contaminant concentration at a realistic field water flow rate. All solutions were pumped into and out of the Darcy boxes using peristaltic pumps and acid washed Masterflex FDA vitron tubing. Dry media was weighed in 1 kg batches and homogenised by shaking and turning end over end in a ziplock bag for 1 minute. To ensure that the media was always saturated, known amounts of Milli-Q water followed by the homogenised media were added to each box in approximately 1 cm layers. 20 mm of space was left at the top of the boxes to allow for frost heave and other particle rearrangement processes. On completion of freeze-thaw cycling and solution flow (refer to Statham 2014), an additional series of assessments was conducted. The media from between the entry weir and the first sample port was removed in five approximately 400 g samples of increasing depth. This procedure was repeated between the last sample port and the exit weir. These samples were left to dry in a fume cabinet before duplicated particle sizing using a Endcotts minor sieve shaker.
-
Metadata record for data from ASAC Project 2547 See the link below for public details on this project. Pue (greater than 90% as determined by SDS-PAGE) samples of nitrate reductase have been isolated from the Antarctic bacterium, Shewanella gelidimarina (ACAM 456T; Accession number U85907 (16S rDNA)). The protein is ~90 kDa (similar to nitrate reductase enzymes characterised from alternate bacteria) and stains positive in an in-situ nitrate reduction (native) assay technique. The protein may be N-terminal blocked, although further sequencing experiments are required to confirm this. This work is based upon phenotyped Antarctic bacteria (S. gelidimarina; S.frigidimarina) that was collected during other ASAC projects. (Refer: Psychrophilic Bacteria from Antarctic Sea-ice and Phospholipids of Antarctic sea ice algal communities new sources of PUFA [ASAC_708] and Biodiversity and ecophysiology of Antarctic sea-ice bacteria [ASAC_1012]). The download file contains 4 scientific papers produced from this work - one of these papers also contains a large set of accession numbers for data stored at GenBank.
-
This dataset is a document describing the 66 species of Hydromedusae found in the Southern Ocean. It lists all the known species, and with illustrated diagrams provides a guide to their taxonomic identification. It also includes general information about Hydromedusae and collection and preservation. The document is available for download as a pdf from the provided URL.
-
These data describe the field deployments of the trace-metal passive sampling tools, diffusive gradients in thin-films (DGT). Deployments occurred over the summer 2017/2018 season in the coastal region adjacent to Casey and Wilkes stations. Deployments of DGT to the nearshore marine environment was achieved with small watercraft and shallow (less than 5m deep) moorings, which were left in situ for 21-37 days, depending on the site.
-
Sediment cores were collected from the East Antarctic margin, aboard the Australian Marine National Facility R/V Investigator from January 14th to March 5th 2017 (IN2017_V01; Armand et al., 2018). This marine geoscience expedition, named the “Sabrina Sea Floor Survey”, focused notably on studying the interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles. The cores were collected using a multi-corer, allowing to sample the surface of the sediment (top ~ 30cm). The cores were then sliced every centimetre, wrapped up in plastic bags, and stored in the fridge. Radiocarbon (14-C) ages were measured to build an age model for future paleo-reconstructions. Sediment samples were pre-treated in the IMAS Sediment Lab (UTAS, Hobart, Australia). Samples (~ 2 g) from the multi-cores MC01, MC03 and MC06 were dried, ground and acidified with HCl for carbonate removal using sterilised beakers. Dried and ground samples were then packed into sterilised aluminium foil and sent to DirectAMS (Radiocarbon Dating Service, USA) for 14C analysis by Accelerator Mass Spectrometer (AMS). Results were corrected for isotopic fractionation with an unreported δ13C value measured on the prepared carbon by the accelerator. References L.K. Armand, P.E. O’Brien and On-board Scientific Party. 2018. Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report, Research School of Earth Sciences, Australian National University: Canberra.