Keyword

MAPS

10 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 10
  • This dataset is a spreadsheet with planimetric areas of the seabed within the Heard Island and McDonald Islands Marine Reserve and adjacent Conservation Zone. The areas are provided for one hundred metre depth ranges and are given in square kilometres. The areas were calculated for the Wildlife Conservation and Fisheries research group at the Australian Antarctic Division. Depth data was sourced from a bathymetric grid of the Kerguelen Plateau by R.J.Beaman of James Cook University, Australia and P.E.O'Brien of Geoscience Australia and published by Geoscience Australia. See a Related URL below for a link to the metadata record describing the bathymetric grid. The Marine Reserve and Conservation Zone boundaries were sourced from the Australian Government's Australian Marine Parks Division. See the provided URL for a link to the department's website.

  • This is a digital version of the grid reference map used to plot all sightings of Weddell seals in the Vestfold Hills. The point of origin is the same as the original map and each grid cell is numbered with the same numbering scheme. This can be used to plot any data using the same numbering scheme by joining (ArcInfo) or linking (ArcView) records to this coverage's polygon attribute table (pat) through the item GRIDREF. The original map was a 1:100 000 map of the Vestfolds, provided by Harry Burton, with a grid drawn over it. The grid references were given as either six or four figure values on which field scientists are to plot their data. This map has the following Antarctic Division drawing reference number: M/75/05A Some research with John Cox revealed that this grid was drawn up over a map digitised from another map with the following specifications: Scale 1: 100 000 Date: 1958 (reprinted 1972) Projection: Polyconic Published by: Division of National Mapping, Canberra Reference number: NMP/58/084 Data are referenced to a 'grid' of 1 minute spacing in x axis and 30 second spacing in y axis. The point of origin is apparently 68 20 S 77 48 E. There are 45 rows and 47 columns. The 'grid reference' is in fact in geographic coordinates (but using arbitrary units) so the projection of the original map became irrelevant. The procedure adopted to create a new digital grid was as follows: (Carried out in Arc/Info) 1. Generate a coverage using the original 'grid references'. 2. Tics were also generated using the corners of the 'grid reference' system. 3. A new coverage was created with tics at the same locations but given the true latitude/longitude vales. 4. The original coverage was then transformed to the new coverage based on the new tic values. 5. The new coverage was then projected from geographic coordinates to UTM metres. The data locations were then viewed in Arc/Info using a coverage of the coastline supplied by the Mapping Officer, Antarctic Division. This had previously been determined to be in the UTM projection. An offset was clearly visible between the data locations and the coastline. In order to determine whether the offset was more or less uniform, ten locations were plotted from the original data onto the original map using the 'grid'. Finally a manual corrected was made by moving all the data locations by a uniform distance of 508 metres north and 68 metres west. Information from John van den Hoff, February 2019: The grid cells were originally labelled from 1 to 47 along the x axis and 1 to 45 along the y axis. The four digit values in the GRIDREF field of the attribute table are the x value followed by the y value. To avoid confusion between x and y values, the grid was later revised so that the y values were prefixed with a ‘1’ so for example 01 became 101. The GRIDREF_X and GRIDREF_Y fields have the x and y values of the revised grid. This needs to be kept in mind when data is sourced from field books. The map shows the revised grid.

  • This dataset is intended for general use in spatial planning and management to identify areas where benthic marine assemblages are likely to differ from each other in the Southern Ocean. We achieve this by using a hierarchical spatial classification of ecoregions, bathomes and environmental types. Ecoregions are defined according to available data on biogeographic patterns and environmental drivers on dispersal. Bathomes are identified according to depth strata defined by species distributions. Environmental types are uniquely classified according to the geomorphic features found within the bathomes in each ecoregion. This circum-Antarctic map of environmental types can be used to support spatial management aimed at conserving benthic biodiversity across the entire Southern Ocean. The study area spans the region managed by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). The northern boundary of this region is a line approximating the location of the Polar Front. The southern boundary was defined as the northern edge of the permanent ice shelf of the Antarctic continent. The shapefile can be used to identify three levels of the hierarchical classification (see Fig. 1 of Douglass et al., 2014): 1) Level 1: Ecoregions 2) Level 2b: Geomorphic features nested in each ecoregion 3) Level 3: Environmental Types The dataset cannot be used to analyse a level 2a nesting since for some geomorphic features (e.g. seamounts and canyons) the nested bathomes were combined when generating environmental types. If a level 2a nesting is required please contact douglass.lucinda@gmail.com The shapefile contains ten fields: EcoID- Abbreviated Level 1 benthic ecoregion names Ecoregion- Level 1 benthic ecoregion names Geomorph2- Geomorphic features BathID- Bathome identification number which can be used to sort the depth classes Bathome2 - Bathome EcoGeo- Level 2b nesting of geomorphic features in each ecoregion EnvTyp- Level 3 environmental types GeoClsID- Geomorphic class identification number GeoCls- Geomorphic classes Sqkm- Area in square kilometers

  • This is a scanned copy of a document detailing data on the extent of sea ice in Antarctic from 1980 to 1988. The scanned pages consist of latitude and distance of the south pole of the northern edge of Antarctic sea ice each 10 degrees of longitude. These data were originally extracted from the U.S. navy - NOAA joint ice centre weekly maps of sea ice extent, and compiled by Jo Jacka.

  • The dataset comprises scanned copies of the boundaries of Adelie penguin breeding colonies and sections of island coastlines made from aerial photographs taken between 9-15 December 1981. The original tracings by Michael Whitehead were scanned by Colin Southwell.

  • This data set contains locations of sample sites for Ellis Fjord (1989), Organic Lake (1985) and Deep Lake (1975, 1975) in the Vestfold Hills. Unfortunately little is known as to what samples were collected. It is believed that water samples were taken at all locations, and that bottom sediment samples were taken at least at Deep Lake. When questioned in 2009, the investigating scientist was unable to remember exactly what work was done. The original maps may provide some clues.

  • This dataset contains the outdated and redundant bathymetric contour data for some of the lakes of the Vestfold Hills. Lake data for Burton Lake, Deep lake and Ellis Fjord.

  • This dataset contains the digitisation of one U.S. Navy/NOAA Joint Ice Facility sea ice extent and concentration map monthly to give the latitude and longitude of the northern extent of the Antarctic sea ice. Maps were produced weekly, but have been digitised monthly, since distribution began in January 1973 (except August 1985), until December 1996. Maps were digitised at each 10 degrees of longitude, and the longitude, distance from the south pole to the northern edge of the sea ice at that longitude, and latitude of that edge is given, as well as the mean distance and latitude for that map. Summary tabulations (sea ice northern extent latitudes at each 10 degree of longitude each year, grouped by month) and mean monthly sea ice extent statistics are also available.

  • The approximate extent of seabird colonies on Scullin Monolith, Mac.Robertson Land, Antarctica in 1986/87. The species include Adelie Penguin, Antarctic Petrel, Cape Petrel, Southern Fulmar and South Polar Skua.

  • The Australian Antarctic Division holds a collection of approximately 5,500 maps and charts. A catalogue of its holdings can be searched in detail and viewed in the SCAR Antarctic Map Catalogue. The Map Catalogue includes many historical maps dating back to the mid 1800's, thematic maps such as geological, vegetation and bathymetry maps, hydrographic charts, topographical maps, satellite image maps and orthophoto maps. Maps for work purposes are provided to Antarctic Expeditioners and AAD staff free of charge. Members of the public may be directed to mapping sales outlets. Contact the technical officer (below) for details. Many maps in the catalogue are digital maps available for download. These maps are provided free of charge. The Data Centre employs a Map Curator for adding, updating and correcting map references. The Map Curator is also responsible for storing and manageing the physical copies of maps in the Data Centre Map store. If there are any errors, please advise the Data Centre using the links on the Map Catalogue page.