From 1 - 10 / 14
  • Metadata record for data from ASAC Project 1306 See the link below for public details on this project. ---- Public Summary from Project ---- The locations and characteristics of nest sites in the Larsemann Hills of three lesser-known seabird species will be mapped. Rapid survey techniques will be trialled and the diets and chronology of breeding determined. The influence of human activities on Broknes on skuas and other seabirds will be examined. Location of seabird colonies recorded using a Garmin 12XL GPS unit (averaged). Nest reference numbers refer to ANARE Research Notes 35, Breeding distribution and abundance of surface-nesting petrels in the Rauer Islands, East Antarctica by K. Green and G.W.Johnstone. The download file contains a number of photographs and a word document providing further information. Also see the metadata records: "Windmill Islands 1:10000 Some abandoned penguin rookery sites point GIS Dataset" and "Windmill Islands 1:10000 Some abandoned penguin rookery sites polygon GIS Dataset".

  • Ten sediment cores were collected from 3 marine bays in the Windmill Islands. Two cores were collected in Sparkes Bay, one in Shannon Bay, and seven in Brown Bay. Only diatom data are presented here, however Pb210 and metal analyses have also been undertaken - contact Ian Snape (ian.snape@aad.gov.au) for more information regarding this. The diatom spreadsheet (diatom_data) lists the relative abundance of benthic species. The abbreviation used to identify species are explained in the separate file called sp_list. Each core has been saved as a separate file. The STE cores were collected from within a couple of meters of each other. These cores were collected in close proximity to a tip site at one end of Brown Bay. BBMid was collected from the middle of the bay, while BB Outer 1 and 2 were collected from the outer regions of this bay, and thus represent the greatest distance from the tip site. Unless otherwise stated, the lowest number within each core represents the youngest sample. This work was completed as part of ASAC project 1130 (ASAC_1130) and project 2201 (ASAC_2201). Public summary from project 1130: Algal mats grow on sea floor in most shallow marine environments. They are thought to contribute more than half of the total primary production in many of these areas, making them a critical food source for invertebrates and some fish. We will establish how important they are in Antarctic marine environments and determine the effects of local sewerage and tip site pollution. We will also investigate the impact on the algal mats of the additional UV radiation which results from the ozone hole. Public summary from project 2201: As a signatory to the Protocol on Environmental Protection to the Antarctic Treaty Australia is committed to comprehensive protection of the Antarctic environment. This protocol requires that activities in the Antarctic shall be planned and conducted on the basis of information sufficient to make prior assessments of, and informed judgements about, their possible impacts on the Antarctic environment. Most of our activities in the Antarctic occur along the narrow fringe of ice-free rock adjacent to the sea and many of our activities have the potential to cause environmental harm to marine life. The Antarctic seas support the most complex and biologically diverse plant and animal communities of the region. However, very little is known about them and there is certainly not sufficient known to make informed judgements about possible environmental impacts. The animals and plants of the sea-bed are widely accepted as being the most appropriate part of the marine ecosystem for indicating disturbance caused by local sources. Attached sea-bed organisms have a fixed spatial relationship with a given place so they must either endure conditions or die. Once lost from a site recolonisation takes some time, as a consequence the structure of sea-bed communities reflect not only present conditions but they can also integrate conditions in the past. In contrast, fish and planktonic organisms can move freely so their site of capture does not indicate a long residence time at that location. Because sea-bed communities are particularly diverse they contain species with widely differing life strategies, as a result different species can have very different levels of tolerance to stress; this leads to a range of subtle changes in community structure as a response to gradually increasing disturbance, rather than an all or nothing response. This project will examine sea-bed communities near our stations to determine how seriously they are affected by human activities. This information will be used to set priorities for improving operational procedures to reduce the risk of further environmental damage. The fields in this dataset are: Species Site Abundance Benthic

  • A hierarchical, 3-level, nested design was used. The highest hierarchical level consisted of six locations. Two of these locations, Brown Bay and Shannon Bay, have been contaminated with heavy metals (Stark et al., 2003; Snape et al., 2001); Brown Bay has also been contaminated with petroleum hydrocarbons (Snape et al., 2001). The remaining four locations are more distant from Casey Station and were used as control locations. These locations were Denison Island, Odbert Island, O'Brien Bay and Sparkes Bay. A full description of these sites is given below. Within each location two sites were selected approximately 100 m apart. Within each site, two plots were sampled (~ 10 m apart). Although the sampling program had been designed for four replicates within each plot, the patchy distribution of bottom sediments in the Windmill Islands restricted this to two replicate samples (~ 1 m apart) per plot. Samples were collected using an Eckman grab sampler, deployed from a boat. To minimise the potential influence of water depth, all samples were collected from 8 m water depth. Samples were collected within a three day period in early February when no sea-ice was present. Diatom data are presented as the relative abundances of benthic species. Samples are identified xyz where x = first initial of sample location (or first 2 initials where 2 locations start with the same letter), y = plot number (plots 1 and 2 represent site 1, while plots 3 and 4 are from site 2), and z = replicate number (a or b). Abbreviations used for species are shown in the separate file sp_list. This work was completed as part of ASAC project 1130 (ASAC_1130) and project 2201 (ASAC_2201). Public summary from project 1130: Algal mats grow on sea floor in most shallow marine environments. They are thought to contribute more than half of the total primary production in many of these areas, making them a critical food source for invertebrates and some fish. We will establish how important they are in Antarctic marine environments and determine the effects of local sewerage and tip site pollution. We will also investigate the impact on the algal mats of the additional UV radiation which results from the ozone hole. Public summary from project 2201: As a signatory to the Protocol on Environmental Protection to the Antarctic Treaty Australia is committed to comprehensive protection of the Antarctic environment. This protocol requires that activities in the Antarctic shall be planned and conducted on the basis of information sufficient to make prior assessments of, and informed judgements about, their possible impacts on the Antarctic environment. Most of our activities in the Antarctic occur along the narrow fringe of ice-free rock adjacent to the sea and many of our activities have the potential to cause environmental harm to marine life. The Antarctic seas support the most complex and biologically diverse plant and animal communities of the region. However, very little is known about them and there is certainly not sufficient known to make informed judgements about possible environmental impacts The animals and plants of the sea-bed are widely accepted as being the most appropriate part of the marine ecosystem for indicating disturbance caused by local sources. Attached sea-bed organisms have a fixed spatial relationship with a given place so they must either endure conditions or die. Once lost from a site recolonisation takes some time, as a consequence the structure of sea-bed communities reflect not only present conditions but they can also integrate conditions in the past. In contrast, fish and planktonic organisms can move freely so their site of capture does not indicate a long residence time at that location. Because sea-bed communities are particularly diverse they contain species with widely differing life strategies, as a result different species can have very different levels of tolerance to stress; this leads to a range of subtle changes in community structure as a response to gradually increasing disturbance, rather than an all or nothing response. This project will examine sea-bed communities near our stations to determine how seriously they are affected by human activities. This information will be used to set priorities for improving operational procedures to reduce the risk of further environmental damage. The fields in this dataset are: Species Site Abundance Benthic

  • Previous exploration and ornithology in the Rauer Group are reviewed. Estimates of the nesting populations of southern fulmars and Antarctic petrels are compared with censuses conducted in 1983/84 and 1984/85. Population estimates varied considerably between years, and within the same year between different observers. To remedy this situation the three islands with sympatric breeding populations of the two species were divided into counting units, which are detailed with photographs. The total populations of surface-nesting petrels are in the order of 14000 pairs of fulmars, 2500 pairs of Antarctic petrel and 400 pairs of cape petrels. Chick survival was estimated at the time of banding and varied considerable between species, islands and years. The fields in this dataset are: Location: Filla Island, Buchan Island and Hop Island Southern Fulmar Antarctic Petrel Cape Petrel Birds Counted Estimated Pairs Population Estimates Chick survival Occupied Nests Number of Birds Conversion factor

  • Surveys were conducted at the eastern and western ends of Heard Island during the 1987/1988 season. Burrow densities in different habitat types (vegetated and unvegetated) were determined from fixed width transects. Extensive areas at both ends of the island were surveyed and detailed information was obtained on distribution and abundance on 4 species of burrowing petrels. This work was completed as part of ASAC project 451 (ASAC_451). This work also falls under the umbrella project, ASAC 1219 (ASAC_1219).

  • Sediment samples were collected with an Eckamn grab from four locations within the Windmill Islands (Herring Island, O'Connor Island, Shannon Bay and Brown Bay). A weekly sampling program was performed over a 10 week period, however not all locations could be accessed each time due to sea-ice conditions. All samples were collected at an 8 m water depth. Preliminary analysis of fortnightly samples are presented here. Diatom data are given as relative abundances of benthic diatom species. The abbreviations used to identify species are explained in the accompanying file sp_list. This work was completed as part of ASAC project 1130 (ASAC_1130) and project 2201 (ASAC_2201). Public summary from project 1130: Algal mats grow on sea floor in most shallow marine environments. They are thought to contribute more than half of the total primary production in many of these areas, making them a critical food source for invertebrates and some fish. We will establish how important they are in Antarctic marine environments and determine the effects of local sewerage and tip site pollution. We will also investigate the impact on the algal mats of the additional UV radiation which results from the ozone hole. Public summary from project 2201: As a signatory to the Protocol on Environmental Protection to the Antarctic Treaty Australia is committed to comprehensive protection of the Antarctic environment. This protocol requires that activities in the Antarctic shall be planned and conducted on the basis of information sufficient to make prior assessments of, and informed judgements about, their possible impacts on the Antarctic environment. Most of our activities in the Antarctic occur along the narrow fringe of ice-free rock adjacent to the sea and many of our activities have the potential to cause environmental harm to marine life. The Antarctic seas support the most complex and biologically diverse plant and animal communities of the region. However, very little is known about them and there is certainly not sufficient known to make informed judgements about possible environmental impacts. The animals and plants of the sea-bed are widely accepted as being the most appropriate part of the marine ecosystem for indicating disturbance caused by local sources. Attached sea-bed organisms have a fixed spatial relationship with a given place so they must either endure conditions or die. Once lost from a site recolonisation takes some time, as a consequence the structure of sea-bed communities reflect not only present conditions but they can also integrate conditions in the past. In contrast, fish and planktonic organisms can move freely so their site of capture does not indicate a long residence time at that location. Because sea-bed communities are particularly diverse they contain species with widely differing life strategies, as a result different species can have very different levels of tolerance to stress; this leads to a range of subtle changes in community structure as a response to gradually increasing disturbance, rather than an all or nothing response. This project will examine sea-bed communities near our stations to determine how seriously they are affected by human activities. This information will be used to set priorities for improving operational procedures to reduce the risk of further environmental damage. The fields in this dataset are: Species Site Abundance Benthic Date Location

  • Full title: Diatom and associated data for a manipulative field experiment examining the effects of heavy metal and petroleum hydrocarbon contamination on benthic diatom communities in the Windmill Islands, Antarctica. A manipulative field experiment was performed to assess the effects of heavy metals and petroleum hydrocarbons on benthic diatom communities in the Windmill Islands. Three treatments were used (control, metal contaminated, and petroleum hydrocarbon contaminated), with replicates of each treatment deployed at three locations (Sparkes Bay, Brown Bay and O'Brien Bay). The datasets associated with this experiment include the concentrations of metals and hydrocarbons within samples, as well as diatom data (raw counts, and the relative abundance of benthic species). This work was completed as part of ASAC project 1130 (ASAC_1130) and project 2201 (ASAC_2201). Public summary from project 1130: Algal mats grow on sea floor in most shallow marine environments. They are thought to contribute more than half of the total primary production in many of these areas, making them a critical food source for invertebrates and some fish. We will establish how important they are in Antarctic marine environments and determine the effects of local sewerage and tip site pollution. We will also investigate the impact on the algal mats of the additional UV radiation which results from the ozone hole. Public summary from project 2201: As a signatory to the Protocol on Environmental Protection to the Antarctic Treaty Australia is committed to comprehensive protection of the Antarctic environment. This protocol requires that activities in the Antarctic shall be planned and conducted on the basis of information sufficient to make prior assessments of, and informed judgements about, their possible impacts on the Antarctic environment. Most of our activities in the Antarctic occur along the narrow fringe of ice-free rock adjacent to the sea and many of our activities have the potential to cause environmental harm to marine life. The Antarctic seas support the most complex and biologically diverse plant and animal communities of the region. However, very little is known about them and there is certainly not sufficient known to make informed judgements about possible environmental impacts. The animals and plants of the sea-bed are widely accepted as being the most appropriate part of the marine ecosystem for indicating disturbance caused by local sources. Attached sea-bed organisms have a fixed spatial relationship with a given place so they must either endure conditions or die. Once lost from a site recolonisation takes some time, as a consequence the structure of sea-bed communities reflect not only present conditions but they can also integrate conditions in the past. In contrast, fish and planktonic organisms can move freely so their site of capture does not indicate a long residence time at that location. Because sea-bed communities are particularly diverse they contain species with widely differing life strategies, as a result different species can have very different levels of tolerance to stress; this leads to a range of subtle changes in community structure as a response to gradually increasing disturbance, rather than an all or nothing response. This project will examine sea-bed communities near our stations to determine how seriously they are affected by human activities. This information will be used to set priorities for improving operational procedures to reduce the risk of further environmental damage. The fields in this dataset are: Species Site Abundance Treatment Type Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Silver Tin Zinc Special Antarctic Blend Lube

  • The body surface, mouth, gills, internal organs and tissues of 368 teleost fish of 26 species from Prydz Bay, Heard Island, Macquarie Island, Davis Station and Casey Station in Antarctica were examined for parasites. At least eight species of Monogenea, seven species of Copepoda, and five or six species of Acanthocephala were recorded. Overall, the fauna of Monogenea and Copepoda of Antarctic fish is much poorer than that of lower latitudes, and there are fewer species of Gyrodactylidae relative to other Monogenea than at higher northern latitudes. Abundance and species richness of Acanthocephala are relatively high.

  • Increased ultraviolet radiation (UV-A and/or UV-B) may impact on the establishment and structure of a shallow water benthic invertebrate assemblages. A global experiment in more than 8 countries, using an identical methodology (transparent UV filters) will add significantly to our understanding of the impacts of anthropogenically induced global change on natural systems. To appraise the effects of increased UVR on shallow marine benthic assemblages, five experimental rafts were deployed in protected bays west of Shirley Island near Casey Station, Antarctica (66.16oS 110.30oE). Each raft consisted of eight experimental units, each of which contained a colonization panel (ceramic tile) positioned horizontally and submerged 4-6 cm underwater. Irradiation treatments were randomly assigned to each unit with the use of UV cut-off filters. The treatments were as follows: No UVR (transmits photosynthetically active radiation or PAR, 400-700nm), No UVB (transmits PAR + UVA, 320-700nm), Perspex (full spectrum, 280-700nm, procedural control), or No filter (full spectrum, treatment control). In addition there were three levels of consumer treatments: With consumption (container sides removed), without consumption (container sides perforated with 4 mm holes), and a control (3 sides perforated, 1 side removed). After seven weeks tiles were removed to the laboratory for examination. All tiles were dominated by diatoms and no sessile invertebrates were apparent. The first trial has been completed, but several other panels are still in place. A conference will be held in early 2002 between participating countries to discuss results and findings. The 2001\2002 summer season consisted of experimental designs divided up into three separate projects. The aims were all to provide a corrollary to the previous seasons data. Project 1 consisted of the extraction and redeployment of settlement depth arrays situated in Geoffrey's Bay and Hollin Island Channel. Due to prevailing weather conditions resulting in limited boating hours and diving program, only one array was retrieved. On inspection of the array it was decided to deploy further replicates to gain a better temporal understanding of the communities. Projects 2 and 3 consisted of a similar experimental design, however monitoring the shallower depths of settlement (depths of 1m and 2m below sea level) for a period of one month. Project 2 consisted of arrays with two depths and 2 panels per depth, triple replicated, under the icesheet in O'Brien Bay and Shirley Channel, with a substrate depth of 20m. Diatom samples are to be analyzed in Australia. Project 3 was of a similar design to project 2 though it was measuring recruitment in shallow open water. The two sites consisted of Noonan Cove and Geoffrey's Bay at substrate depths of 5m. These tiles are also to be analyzed on return to Australia. There were 5 rafts used in this study - they are listed as R1 to R5 there were two factors in the design -(i) predator access: Caged (C) Half caged (H) and Open (O) and ii) UV exposure: Perspex (P), Macrolon (M), No filter (N) and Film + perspex (F). A list of the diatoms found on the settlement panels is provided at the URL below. The fields in this dataset are: Species Sample

  • Full title: Diatom and associated data for a manipulative field experiment which translocated control and contaminated sediments between locations within the Windmill Islands, Antarctica. A manipulative field experiment was performed to assess the effects of heavy metals and petroleum hydrocarbons on benthic diatom communities in the Windmill Islands. Three treatments were used (control, metal contaminated, and petroleum hydrocarbon contaminated), with replicates of each treatment deployed at three locations (Sparkes Bay, Brown Bay and O'Brien Bay). The datasets associated with this experiment include the concentrations of metals within the sediments as well as diatom data (raw counts, and the relative abundance of benthic species). This work was completed as part of ASAC project 1130 (ASAC_1130) and project 2201 (ASAC_2201). Public summary from project 1130: Algal mats grow on sea floor in most shallow marine environments. They are thought to contribute more than half of the total primary production in many of these areas, making them a critical food source for invertebrates and some fish. We will establish how important they are in Antarctic marine environments and determine the effects of local sewerage and tip-site pollution. We will also investigate the impact on the algal mats of the additional UV radiation which results from the ozone hole. Public summary from project 2201: As a signatory to the Protocol on Environmental Protection to the Antarctic Treaty Australia is committed to comprehensive protection of the Antarctic environment. This protocol requires that activities in the Antarctic shall be planned and conducted on the basis of information sufficient to make prior assessments of, and informed judgements about, their possible impacts on the Antarctic environment. Most of our activities in the Antarctic occur along the narrow fringe of ice-free rock adjacent to the sea and many of our activities have the potential to cause environmental harm to marine life. The Antarctic seas support the most complex and biologically diverse plant and animal communities of the region. However, very little is known about them and there is certainly not sufficient known to make informed judgements about possible environmental impacts. The animals and plants of the sea-bed are widely accepted as being the most appropriate part of the marine ecosystem for indicating disturbance caused by local sources. Attached sea-bed organisms have a fixed spatial relationship with a given place so they must either endure conditions or die. Once lost from a site recolonisation takes some time, as a consequence the structure of sea-bed communities reflect not only present conditions but they can also integrate conditions in the past. In contrast, fish and planktonic organisms can move freely so their site of capture does not indicate a long residence time at that location. Because sea-bed communities are particularly diverse they contain species with widely differing life strategies, as a result different species can have very different levels of tolerance to stress; this leads to a range of subtle changes in community structure as a response to gradually increasing disturbance, rather than an all or nothing response. This project will examine sea-bed communities near our stations to determine how seriously they are affected by human activities. This information will be used to set priorities for improving operational procedures to reduce the risk of further environmental damage. The fields in this dataset are: Species Arsenic Cadmium Copper Lead Silver Zinc Concentration Location Treatment Abundance Benthic Site