From 1 - 10 / 12
  • Production of the arsenic species total inorganic arsenic [As(V+III)],arsenite [As(III)], monomethyl arsenic (MMA) and dimethyl arsenic (DMA) was studied in the Subantarctic Zone (SAZ) of the Southern Ocean, south of Australia, during the austral autumn (March 1998). Surface samples were collected approximately every degree of latitude along the meridional transect 14130' E from 42 to 55 S. In addition, representative vertical profiles were collected at: 4206' S, 14153' E (Subtropical Convergence Zone - STCZ), 4643' S, 14159' E (Subantarctic Zone - SAZ), 5104' S, 14336' E (Subantarctic Front - SAF) and 5344' S, 14142' E (northern branch of the Polar Frontal Zone - PFZ). As(V) was the dominant arsenic species in both vertical profiles and surface waters along the transect. It was also the only species observed at depths greater than 600 m. Production of the reduced arsenic species (As(III), MMA, DMA) was low in these waters compared with other oceanic sites with similar concentrations of chlorophyll a. As(III) concentrations could not be reliably quantified at any sites (less than 0.04 nM). Greatest conversion of arsenic to 'biological' species was found at the surface in the Subtropical Convergence Zone (2.5%) and decreased heading southward to 1% in the Polar Front (PF). While the decline in methyl arsenic production was broadly associated with water temperature and measures of biological production, slightly different trends in methyl arsenic production were found in the SAZ and PF. North of the Subantarctic Front (SAF) methyl arsenic production was well correlated with water temperature, while south of the front no such relation existed. In addition, the ratio of DMA/MMA increased south of the SAF, associated with a change in the microalgal community composition. Low water temperature, phosphate-replete conditions and low biological productivity in the SAZ all contribute to the concentrations of biologically produced arsenic species in this region being amongst the lowest reported for oceanic waters. The data are stored in an excel spreadsheet, and a readme text file.

  • A survey of macrobenthic assemblages in soft-sediments was done at Casey Station, East Antarctica. Samples were taken by divers using hand-held corers (core size - 10 cm diameter by 10 cm deep). The aims were: 1) To examine spatial variation at several scales in these assemblages; 2) To determine if there were differences between potentially impacted areas and control areas; 3) To determine the level of replication, taxonomic resolution and data transformation that are appropriate to studies of human impacts in Antarctic soft-sediment assemblages. Cores were collected by divers in a hierarchical, spatially nested design incorporating 4 scales: Locations (1000s of metres apart), Sites (100s of metres), Plots (10s of metres) and among replicates within plots (~1 metre). Four replicates for infaunal analysis were collected from each plot. Variation at the whole assemblage level was most significant at the largest scale: between Locations; but significant differences were also found between Plots within Sites, and between Sites within Locations. The impacted locations, near two waste tips, a sewage outfall and a wharf, as a group were significantly different to control locations. Impacted locations had less variable assemblages but more variable populations of dominant species than control locations. Control locations had greater richness and diversity than impacted locations. Patterns of assemblage structure were similar at fine (species and family) and medium (family to order) levels of taxonomic resolution but changed at coarse (phylum) levels of resolution. Assemblage patterns were similar between untransformed, square root and fourth root transformations but often different in presence/absence transformations. Concentrations of metals in sediments were also analysed and other environmental variables such as grain size and water depth were measured (two replicates from each plot). Multivariate correlations between the biological and environmental datasets were examined. Links to ASAC 1100. The fields in this dataset are: Location Site/Plot Replicate Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Silver Tin Zinc Weight Toxicity

  • These results are for the 0.5 hour extraction of HCl. See also the metadata records for the 4 hour extraction of HCl, and the time trial data for 1 M HCl extractions. A regional survey of potential contaminants in marine or estuarine sediments is often one of the first steps in a post-disturbance environmental impact assessment. Of the many different chemical extraction or digestion procedures that have been proposed to quantify metal contamination, partial acid extractions are probably the best overall compromise between selectivity, sensitivity, precision, cost and expediency. The extent to which measured metal concentrations relate to the anthropogenic fraction that is bioavailable is contentious, but is one of the desired outcomes of an assessment or prediction of biological impact. As part of a regional survey of metal contamination associated with Australia's past waste management activities in Antarctica, we wanted to identify an acid type and extraction protocol that would allow a reasonable definition of the anthropogenic bioavailable fraction for a large number of samples. From a kinetic study of the 1 M HCl extraction of two certified Certified Reference Materials (MESS-2 and PACS-2) and two Antarctic marine sediments, we concluded that a 4 hour extraction time allows the equilibrium dissolution of relatively labile metal contaminants, but does not favour the extraction of natural geogenic metals. In a regional survey of 88 marine samples from the Casey Station area of East Antarctica, the 4 h extraction procedure correlated best with biological data, and most clearly identified those sediments thought to be contaminated by runoff from abandoned waste disposal sites. Most importantly the 4 hour extraction provided better definition of the low to moderately contaminated locations by picking up small differences in anthropogenic metal concentrations. For the purposes of inter-regional comparison, we recommend a 4 hour 1 M HCl acid extraction as a standard method for assessing metal contamination in Antarctica. The fields in this dataset are Location Site Replicate Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Nickel Silver Tin Zinc

  • Full title: Diatom and associated data for a manipulative field experiment which translocated control and contaminated sediments between locations within the Windmill Islands, Antarctica. A manipulative field experiment was performed to assess the effects of heavy metals and petroleum hydrocarbons on benthic diatom communities in the Windmill Islands. Three treatments were used (control, metal contaminated, and petroleum hydrocarbon contaminated), with replicates of each treatment deployed at three locations (Sparkes Bay, Brown Bay and O'Brien Bay). The datasets associated with this experiment include the concentrations of metals within the sediments as well as diatom data (raw counts, and the relative abundance of benthic species). This work was completed as part of ASAC project 1130 (ASAC_1130) and project 2201 (ASAC_2201). Public summary from project 1130: Algal mats grow on sea floor in most shallow marine environments. They are thought to contribute more than half of the total primary production in many of these areas, making them a critical food source for invertebrates and some fish. We will establish how important they are in Antarctic marine environments and determine the effects of local sewerage and tip-site pollution. We will also investigate the impact on the algal mats of the additional UV radiation which results from the ozone hole. Public summary from project 2201: As a signatory to the Protocol on Environmental Protection to the Antarctic Treaty Australia is committed to comprehensive protection of the Antarctic environment. This protocol requires that activities in the Antarctic shall be planned and conducted on the basis of information sufficient to make prior assessments of, and informed judgements about, their possible impacts on the Antarctic environment. Most of our activities in the Antarctic occur along the narrow fringe of ice-free rock adjacent to the sea and many of our activities have the potential to cause environmental harm to marine life. The Antarctic seas support the most complex and biologically diverse plant and animal communities of the region. However, very little is known about them and there is certainly not sufficient known to make informed judgements about possible environmental impacts. The animals and plants of the sea-bed are widely accepted as being the most appropriate part of the marine ecosystem for indicating disturbance caused by local sources. Attached sea-bed organisms have a fixed spatial relationship with a given place so they must either endure conditions or die. Once lost from a site recolonisation takes some time, as a consequence the structure of sea-bed communities reflect not only present conditions but they can also integrate conditions in the past. In contrast, fish and planktonic organisms can move freely so their site of capture does not indicate a long residence time at that location. Because sea-bed communities are particularly diverse they contain species with widely differing life strategies, as a result different species can have very different levels of tolerance to stress; this leads to a range of subtle changes in community structure as a response to gradually increasing disturbance, rather than an all or nothing response. This project will examine sea-bed communities near our stations to determine how seriously they are affected by human activities. This information will be used to set priorities for improving operational procedures to reduce the risk of further environmental damage. The fields in this dataset are: Species Arsenic Cadmium Copper Lead Silver Zinc Concentration Location Treatment Abundance Benthic Site

  • Full title: Diatom and associated data for a manipulative field experiment examining the effects of heavy metal and petroleum hydrocarbon contamination on benthic diatom communities in the Windmill Islands, Antarctica. A manipulative field experiment was performed to assess the effects of heavy metals and petroleum hydrocarbons on benthic diatom communities in the Windmill Islands. Three treatments were used (control, metal contaminated, and petroleum hydrocarbon contaminated), with replicates of each treatment deployed at three locations (Sparkes Bay, Brown Bay and O'Brien Bay). The datasets associated with this experiment include the concentrations of metals and hydrocarbons within samples, as well as diatom data (raw counts, and the relative abundance of benthic species). This work was completed as part of ASAC project 1130 (ASAC_1130) and project 2201 (ASAC_2201). Public summary from project 1130: Algal mats grow on sea floor in most shallow marine environments. They are thought to contribute more than half of the total primary production in many of these areas, making them a critical food source for invertebrates and some fish. We will establish how important they are in Antarctic marine environments and determine the effects of local sewerage and tip site pollution. We will also investigate the impact on the algal mats of the additional UV radiation which results from the ozone hole. Public summary from project 2201: As a signatory to the Protocol on Environmental Protection to the Antarctic Treaty Australia is committed to comprehensive protection of the Antarctic environment. This protocol requires that activities in the Antarctic shall be planned and conducted on the basis of information sufficient to make prior assessments of, and informed judgements about, their possible impacts on the Antarctic environment. Most of our activities in the Antarctic occur along the narrow fringe of ice-free rock adjacent to the sea and many of our activities have the potential to cause environmental harm to marine life. The Antarctic seas support the most complex and biologically diverse plant and animal communities of the region. However, very little is known about them and there is certainly not sufficient known to make informed judgements about possible environmental impacts. The animals and plants of the sea-bed are widely accepted as being the most appropriate part of the marine ecosystem for indicating disturbance caused by local sources. Attached sea-bed organisms have a fixed spatial relationship with a given place so they must either endure conditions or die. Once lost from a site recolonisation takes some time, as a consequence the structure of sea-bed communities reflect not only present conditions but they can also integrate conditions in the past. In contrast, fish and planktonic organisms can move freely so their site of capture does not indicate a long residence time at that location. Because sea-bed communities are particularly diverse they contain species with widely differing life strategies, as a result different species can have very different levels of tolerance to stress; this leads to a range of subtle changes in community structure as a response to gradually increasing disturbance, rather than an all or nothing response. This project will examine sea-bed communities near our stations to determine how seriously they are affected by human activities. This information will be used to set priorities for improving operational procedures to reduce the risk of further environmental damage. The fields in this dataset are: Species Site Abundance Treatment Type Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Silver Tin Zinc Special Antarctic Blend Lube

  • These results are for the 4 hour extraction of HCl. See also the metadata records for the 0.5 hour extraction of HCl, and the time trial data for 1 M HCl extractions. A regional survey of potential contaminants in marine or estuarine sediments is often one of the first steps in a post-disturbance environmental impact assessment. Of the many different chemical extraction or digestion procedures that have been proposed to quantify metal contamination, partial acid extractions are probably the best overall compromise between selectivity, sensitivity, precision, cost and expediency. The extent to which measured metal concentrations relate to the anthropogenic fraction that is bioavailable is contentious, but is one of the desired outcomes of an assessment or prediction of biological impact. As part of a regional survey of metal contamination associated with Australia's past waste management activities in Antarctica, we wanted to identify an acid type and extraction protocol that would allow a reasonable definition of the anthropogenic bioavailable fraction for a large number of samples. From a kinetic study of the 1 M HCl extraction of two certified Certified Reference Materials (MESS-2 and PACS-2) and two Antarctic marine sediments, we concluded that a 4 hour extraction time allows the equilibrium dissolution of relatively labile metal contaminants, but does not favour the extraction of natural geogenic metals. In a regional survey of 88 marine samples from the Casey Station area of East Antarctica, the 4 h extraction procedure correlated best with biological data, and most clearly identified those sediments thought to be contaminated by runoff from abandoned waste disposal sites. Most importantly the 4 hour extraction provided better definition of the low to moderately contaminated locations by picking up small differences in anthropogenic metal concentrations. For the purposes of inter-regional comparison, we recommend a 4 hour 1 M HCl acid extraction as a standard method for assessing metal contamination in Antarctica. The fields in this dataset are Location Site Replicate Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Nickel Silver Tin Zinc

  • These results are for the time trial extraction of HCl. See also the metadata records for the 0.5 and 4 hour extractions of HCl. A regional survey of potential contaminants in marine or estuarine sediments is often one of the first steps in a post-disturbance environmental impact assessment. Of the many different chemical extraction or digestion procedures that have been proposed to quantify metal contamination, partial acid extractions are probably the best overall compromise between selectivity, sensitivity, precision, cost and expediency. The extent to which measured metal concentrations relate to the anthropogenic fraction that is bioavailable is contentious, but is one of the desired outcomes of an assessment or prediction of biological impact. As part of a regional survey of metal contamination associated with Australia's past waste management activities in Antarctica, we wanted to identify an acid type and extraction protocol that would allow a reasonable definition of the anthropogenic bioavailable fraction for a large number of samples. From a kinetic study of the 1 M HCl extraction of two certified Certified Reference Materials (MESS-2 and PACS-2) and two Antarctic marine sediments, we concluded that a 4 hour extraction time allows the equilibrium dissolution of relatively labile metal contaminants, but does not favour the extraction of natural geogenic metals. In a regional survey of 88 marine samples from the Casey Station area of East Antarctica, the 4 h extraction procedure correlated best with biological data, and most clearly identified those sediments thought to be contaminated by runoff from abandoned waste disposal sites. Most importantly the 4 hour extraction provided better definition of the low to moderately contaminated locations by picking up small differences in anthropogenic metal concentrations. For the purposes of inter-regional comparison, we recommend a 4 hour 1 M HCl acid extraction as a standard method for assessing metal contamination in Antarctica. The fields in this dataset are Concentration Extraction Time Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Nickel Silver Tin Zinc

  • The effect of location, depth and sediment contamination on recruitment of soft-sediment assemblages were examined in a pilot experiment at Casey Station, East Antarctica. Two locations were used, a polluted bay adjacent to an old disused tip site (Brown Bay) and an undisturbed control (O'Brien Bay). At each location two types of defaunated sediment (polluted and control) were placed at 2 depths, 15 m and 25 m. Sediments were left in place over the Austral winter, from March - November. There were large differences in recruitment between the two locations and depths and some differences between the two sediment types. Brown Bay had greater recruitment than O'Brien Bay. Shallow sites had generally greater recruitment than deep, but deep sites had greater diversity (H'), richness (d) and evenness (J'). Control sediment recruited greater numbers of arthropod, gammarid and isopod taxa. There were not only differences in abundance of taxa and assemblage structure but also in spatial variability and variability of populations of certain taxa, with recruitment to the control and deep locations more variable, and recruitment in the control sediment more variable than the polluted sediment. Recruitment was influenced by a combination of location, depth and sediment type. There is some evidence of an environmental impact at the polluted site. The majority of fauna recruiting to the experiment were highly motile colonizing species with non-pelagic lecithotrophic larvae, usually brooded and released as dispersing juveniles, such as gammarids, tanaids, isopods and gastropods. A total of 56 recruitment samples were collected. Samples were sieved at 500 micro metres and sorted mainly to species. Metal concentrations and total organic carbon concentrations are also included. Also links to ASAC 1100. The fields in this dataset are: Species Location Site Treatment (tmt) Site and replicate Toxicity Arsenic Cadmium Copper Lead Silver Zinc

  • Sediment samples were collected from nine points along 3 parallel transects within the contaminated Brown Bay. The diatom spreadsheet (diatom_data) contains both initial diatom counts and the relative abundance of benthic species. The abbreviation used to identify species are explained in the separate file called sp_list. Metal, Total Purgeable Hydrocarbons (TPH), and grain-size data are all presented as separate files. This work was completed as part of ASAC project 1130 (ASAC_1130) and project 2201 (ASAC_2201). Public summary from project 1130: Algal mats grow on sea floor in most shallow marine environments. They are thought to contribute more than half of the total primary production in many of these areas, making them a critical food source for invertebrates and some fish. We will establish how important they are in Antarctic marine environments and determine the effects of local sewerage and tip-site pollution. We will also investigate the impact on the algal mats of the additional UV radiation which results from the ozone hole. Public summary from project 2201: As a signatory to the Protocol on Environmental Protection to the Antarctic Treaty Australia is committed to comprehensive protection of the Antarctic environment. This protocol requires that activities in the Antarctic shall be planned and conducted on the basis of information sufficient to make prior assessments of, and informed judgements about, their possible impacts on the Antarctic environment. Most of our activities in the Antarctic occur along the narrow fringe of ice-free rock adjacent to the sea and many of our activities have the potential to cause environmental harm to marine life. The Antarctic seas support the most complex and biologically diverse plant and animal communities of the region. However, very little is known about them and there is certainly not sufficient known to make informed judgements about possible environmental impacts The animals and plants of the sea-bed are widely accepted as being the most appropriate part of the marine ecosystem for indicating disturbance caused by local sources. Attached sea-bed organisms have a fixed spatial relationship with a given place so they must either endure conditions or die. Once lost from a site recolonisation takes some time, as a consequence the structure of sea-bed communities reflect not only present conditions but they can also integrate conditions in the past. In contrast, fish and planktonic organisms can move freely so their site of capture does not indicate a long residence time at that location. Because sea-bed communities are particularly diverse they contain species with widely differing life strategies, as a result different species can have very different levels of tolerance to stress; this leads to a range of subtle changes in community structure as a response to gradually increasing disturbance, rather than an all or nothing response. This project will examine sea-bed communities near our stations to determine how seriously they are affected by human activities. This information will be used to set priorities for improving operational procedures to reduce the risk of further environmental damage. The fields in this dataset are: bbg_lat spreadsheet Site Latitude Longitude Easting Northing Diatoms spreadsheet Species Site Abundance Transect Metals Spreadsheet Sample Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Silver Tin Zinc Total Organic Carbon Easting Northing TPH Spreadsheet Site Total Purgeable Hydrocarbons Fraction of Purgeable Hydrocarbons

  • The effect of location and sediment contamination on recruitment of soft-sediment assemblages were examined in field experiment at Casey Station, East Antarctica. Four locations were used, a polluted bay adjacent to an old disused tip site (Brown Bay), a bay adjacent to the Casey Station sewage outfall, and two undisturbed control locations in O'Brien Bay. At each location two types of defaunated sediment (polluted and control) were placed 12 - 18 m, in experimental trays. Half of the experimental sediments were left in place over the Austral winter, from March - November, and the remaining sediments were collected after a total of one year, in February 1999. There were large differences in recruitment between the two locations and significant differences between the polluted and control sediment. There were not only differences in abundance of taxa and assemblage structure but also in spatial variability and variability of populations of certain taxa, with recruitment to the control locations more variable than polluted locations, and recruitment in the control sediment more variable than the polluted sediment. The majority of fauna recruiting to the experiment were highly motile colonizing species with non-pelagic lecithotrophic larvae, usually brooded and released as dispersing juveniles, such as gammarids, tanaids, isopods and gastropods. A total of 64 recruitment samples were collected after 9 months and 52 samples after one year. Samples were sieved at 500 micro m and sorted mainly to species. Samples are rows in data sheet. Site codes include place name (e.g. BB2) and experimental treatment (e.g. C1 - control 1). See accompanying sheet for full details of codes, including species names. Sediment chemistry data are means (and standard errors) for each treatment (averaged over 2 trays). Also links to ASAC 1100. The fields in this dataset are: Species Site Sample Abundance Toxicity Arsenic Cadmium Copper Lead Silver Zinc