VESTFOLD HILLS
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
From the referenced paper: The frigid concentration or freezing of seawater is an important natural phenomenon in the polar regions and results in the precipitation of a different sequence of salts - and thus produces brines of different composition - to that formed during isothermal evaporation under temperate conditions (about 20-25 degrees C). Seawater freezing, however, has been studied less extensively than evaporation and somewhat greater uncertainty exists over the exact nature of the compositional pathway followed. Most investigators have shown that the precipitation of mirabilite (Na2SO4 - 10 H2O) or gypsum (CaSO4 - 2 H2O), which both occur at the same seawater concentration factor (SWCF), is the critical difference between frigid and evaporative concentration, respectively, a consequence of the very different temperature dependence of the solubilities of these salts, as well as the effect of sodium chloride on these properties. This difference can be considered to represent a temperature-dependent chemical divide in the closed-basin concentration of seawater because it determines significantly the major ion composition of the brine and the salt mineral assemblage precipitated on further evolution of the system. Recently new insights into seawater freezing have been achieved through improvements in existing chemical equilibrium models. Along with the results of some associated experimental work, this has provided evidence for the formation of gypsum during freezing, contradicting the accepted Ringer-Nelson-Thompson model of frigid concentration firmly established in the 1950's and through subsequent studies, but validating an alternative model proposed by Gitterman two decades later.
-
This dataset contains the outdated and redundant bathymetric contour data for some of the lakes of the Vestfold Hills. Lake data for Burton Lake, Deep lake and Ellis Fjord.
-
The underwater and in-air recordings were used to derive a technique to classify the call types. The in-air recordings demonstrated that both males and females vocalise and often a single seal will string up to 6 call types together in a variety of orders. No 'Trills' were heard by males or females on the ice. The seals lengthened the duration of multiple-element calls when they were 'interrupted' by another calling seal. This suggests that the seals are listening for the calls of conspecifics while they themselves are calling. A pilot project indicated that almost none of the calls are completely masked by other calling seals. The recordings are being used (in association with recordings obtained in later years) to address other aspects of Weddell seal vocal communication. See the link below for public details on this project.
-
This database is a compendium of histories of known age seals (Weddell) from observations across the Southern Ocean but focussed on the Windmill Islands, Mawson and the Vestfold Hills. Although the following information pertains to Elephant Seals, it is assumed similar procedures were undertaken with the Weddell Seals between 1973 and 2006: At Macquarie Island 1000 seals were weighed per annum between 1993-2003 at birth and individually marked with two plastic flipper tags in the inter-digital webbing of their hind flippers. These tagged seals were weighed again at weaning, when length, girth, fat depth, and flipper measurements were made. Three weeks after weaning 2000 seals were permanently and individually marked by hot-iron branding. Recaptures and re-weighings of these known aged individuals were used to calculate growth and age-specific survival of the seals. Similar data were collected from elephant seals between 1950 and 1965 when seals were individually marked by hot-iron branding. Mark-recapture data from these cohorts were used to assess the demography of the declining population. Length and mass data were also collected for these cohorts and were used, for the first time, to assess the growth of individual seals without killing them. The database was held by the Australian Antarctic Data Centre, but was taken offline due to maintenance problems. A snapshot of the database was taken in June 2018 and stored in an access database. This work was completed as part of ASAC project 90.
-
This data set contains locations of sample sites for Ellis Fjord (1989), Organic Lake (1985) and Deep Lake (1975, 1975) in the Vestfold Hills. Unfortunately little is known as to what samples were collected. It is believed that water samples were taken at all locations, and that bottom sediment samples were taken at least at Deep Lake. When questioned in 2009, the investigating scientist was unable to remember exactly what work was done. The original maps may provide some clues.
-
Colonisation of Lake Fletcher, a hypersaline, meromictic lake in the Vestfold Hills, Antarctica, by the calanoid copepod Drepanopus bispinosus, the cyclopoid copepod Oncea curvata and an undescribed cydippid ctenophore is discussed. In 1978, salinity direstly under the ice was 66 ppt and repeated net hauls found no zooplankton. In 1983, adults of D. bispinosus were found, and in 1984, a reproductively active population of this species. Surface water salinity in 1984 was 56 ppt. During winter 1986, surface salinity was 54 ppt and three zooplankton species (D. bispinosus, O curvata and an undescribed cydippid ctenophore) had established populations in the lake. In 1986/87, high tides caused nearby Taynaya Bay to flood into the lake, and three further species (the calanoid, Paralabidocera antarctica, and two harpacticoids, Harpacticus furcatus and Idomene sp.) were found in the lake. It appears that periodic flooding after 1978 caused a salinity decrease in the lake from 66 to 54 ppt, and this enabled some invertebrate species to maintain year-round populations, whereas others require marine incursions to re-establish summer only populations. The fields in this dataset are: Date Salinity Record Species
-
Aerial photography (Linhof) of penguin colonies was acquired over the Vestfold Hills (Eric Woehler). The penguin colonies were traced, then digitised (John Cox), and saved as DXF-files. Using the ArcView extension 'Register and Transform' (Tom Velthuis), The DXF-files were brought into a GIS and transformed to the appropriate islands.
-
From the abstract of the referenced paper: Spring phytoplankton communities in the water column of Ellis Fjord are characterised by diatoms originating from the bottom sea-ice strand community. Upon ice break-out in early summer, these are replaced by blooms of the phytoflagellates, Phaeocystis puchetii, Cryptomonas cryophila, Pyramimonas gelidicola, silicoflagellates and dinoflagellates. The narrow entrance of the fjord and the development of summer stratification is probably limiting the availability of nutrients and containing the magnitude of the small bloom (maximum 2.8 million cells per litre).
-
This database is a compendium of histories of known age seals (Weddell and Southern elephant) from observations across the Southern Ocean but focussed on Macquarie Island, Marion Island, Heard Island, Mawson and the Vestfold Hills. At Macquarie Island 1000 seals were weighed per annum between 1993-2003 at birth and individually marked with two plastic flipper tags in the inter-digital webbing of their hind flippers. These tagged seals were weighed again at weaning, when length, girth, fat depth, and flipper measurements were made. Three weeks after weaning 2000 seals were permanently and individually marked by hot-iron branding. Recaptures and re-weighings of these known aged individuals were used to calculate growth and age-specific survival of the seals. Similar data were collected from elephant seals between 1950 and 1965 when seals were individually marked by hot-iron branding. Mark-recapture data from these cohorts were used to assess the demography of the declining population. Length and mass data were also collected for these cohorts and were used, for the first time, to assess the growth of individual seals without killing them. At Marion Island all the elephant seals have been individually marked with two plastic flipper tags in their rear flippers. Recaptures of these seals were used to compare survival at Marion and Macquarie Islands. At Heard Island, seals were branded between 1949-1953. Seal length was measured in feet and inches. Recaptures of seals were made up until 1955, and growth and age-specific survival was calculated. Survival data from Heard Island were compared with concurrent data from Macquarie Island. The database was held by the Australian Antarctic Data Centre, but was taken offline due to maintenance problems. A snapshot of the database was taken in June 2018 and stored in an access database. This work was completed as part of ASAC project 90.
-
The sedimentological, chemical and isotopic characteristics of sediment cores from three slightly saline to hypersaline lakes (Highway, Ace and Organic Lakes) and two marine inlets (Ellis Fjord and Taynaya Bay) in the Vestfold Hills, Antarctica have been examined. Sections of the cores deposited in marine environments are characterised by uniform, regularly laminated, fine grained, organic-rich sediments, with uniform organic delta 13C values (-18.0 to 19.4 ppt vs. PDB) and sulfur contents. In contrast, sediments deposited in lacustrine environments are extremely heterogeneous, varying from finely laminated mat-like sequences to poorly sorted clastic-rich sediments. Authigenic monohydrocalcite and aragonite occur in some lake sediments. The delta 13C values of organic matter in the lacustrine sediments exhibit an extremely wide range (-10.5 to -25.3 ppt) that can be related to variations in physico-chemical conditions in the lake waters. Strongly negative organic-delta 13C values coupledwith high sulfur contents are indicative of an anoxic zone in the overlying lake waters, whereas less negative organic-delta 13C values coupled with low sulfur contents are indicative of well-mixed oxic conditions. Particularly high organic-delta 13C values result during high levels of microbial activity in the lakes, due to high rates of photosynthetic CO2 fixation. The large shifts in organic-delta 13C are not necessarily accompanied by any change in macroscopic sedimentological characteristics, illustrating the utility if isotopic investigations in these environments. The delta 13C composition of authigenic carbonate in hypersaline Organic Lake sediments provides a record of changes in palaeoproductivity, while the delta 18O of the carbonate provides information on rates of meltwater input and evaporation in the lake. 14C-dating suggests that Highway Lake was isolated from the sea by isostatic uplift at least 4600 years before present (BP) whereas Organic Lake was isolated at approximately 2700 years BP. Apparent emergence rates calculated from the 14C ages range from 1.0 to 2.1 mm per year. The 'reservoir effect' in the lacustrine and marine environments is variable, but probably does not exceed ~ 1000 years in any of the lakes examined.