Keyword

FIELD INVESTIGATION

346 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 346
  • Results from a February 2007 survey of the Vestfold Hills coastline and offshore islands for used and disused southern elephant seal wallows. The data here are point locations of the wallows, not the extents or boundaries of the wallows. The table below gives the coordinates (decimal degrees) for the elephant seal wallows found, their unofficial names and the wallow status as used or disused at the time of survey. Data were used in the 2018 Vestfold Hills/Davis Station Helicopter map: Wallow name Latitude Longitude Status Hawker Island -68.637360 77.840040 Used Hawker Island -68.634950 77.841310 Used Hawker Island -68.632180 77.841560 Used Mule Island -68.647860 77.825900 Unused Mule Island -68.646650 77.823920 Unused Zappert Point -68.505100 78.081020 Unused Old Wallow -68.598345 77.937185 Used Davis beach -68.577926 77.967032 Used Heidemann Bay -68.592067 77.945325 Used North of station -68.571916 77.971011 Used

  • Depth to sea floor and sea ice thickness data measured at various locations around the Vestfold Hills, Davis station, East Antarctica, during the 2018-19 austral summer. Depth to sea floor and sea ice thickness measures in meters obtained using a weighted tape measure deployed through a hole (5 cm) drilled in the sea ice. Sea ice thickness was determined by snagging the weight on the underside edge of the ice hole as the tape measure was retreived.

  • Metadata record for data from ASAC Project 2179 See the link below for public details on this project. Taken from a progress report of the project written in 1998: 60 terrestrial sediments have been taken from Wilkes and Thala Valley tip, with control sites at Robinsons Ridge and Jacks Donga. 50 marine sediments have been taken from the bay offshore from Thala Valley tip. 116 fresh and marine waters have been taken from the fresh water stream flowing through the Thala Valley tip, the tip/sea interface, and the nearshore marine offshore from Thala Valley tip and control sites. Formal integration of these data into a GIS is underway. These data have not been archived until 2012, hence the only data available were sourced from publications arising from the project.

  • Metadata record AAS_4127_antFOCE_HardSubstrateFauna contains all data sets relating to the fauna sampled from hard substrates during the antFOCE experiment, including recruitment tiles, artificial substrate units and biofilm slides. Refer to antFOCE report section 4.5 for deployment, sampling and on-station analysis details. https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127 Background The antFOCE experimental system was deployed in O’Brien Bay, approximately 5 kilometres south of Casey station, East Antarctica, in the austral summer of 2014/15. Surface and sub-surface (in water below the sea ice) infrastructure allowed controlled manipulation of seawater pH levels (reduced by 0.4 pH units below ambient) in 2 chambers placed on the sea floor over natural benthic communities. Two control chambers (no pH manipulation) and two open plots (no chambers, no pH manipulation) were also sampled to compare to the pH manipulated (acidified) treatment chambers. Details of the antFOCE experiment can be found in the report – “antFOCE 2014/15 – Experimental System, Deployment, Sampling and Analysis”. This report and a diagram indicating how the various antFOCE data sets relate to each other are available at: https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127

  • An occupancy survey in November 2006 found a total of 29 islands in the Robinson Group of islands had populations of breeding Adelie penguins. The boundaries of breeding colonies at 27 of these were mapped in Nov 2006 for abundance surveys. Nine of these breeding sites were remapped on the 29th of November 2013 in conjunction with colony counts. Subcolonies were mapped by circumnavigating the perimeter of sub-colonies on foot while carrying a Garmin GPS (Legend Cx) to log the track taken. The person walking around the sub-colonies maintained a buffer distance of approximately 2.5m between themselves and the breeding birds along the sub-colony boundary. This buffer distance was reduced to approximately 2m in the final shapefiles. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • Six colonies with breeding Adelie colonies were mapped this season in the Rookery Island group in conjunction with colony counts. Islands 74814 and the main Rookery Island 74721 were not mapped this season. Subcolonies were mapped by circumnavigating the perimeter of sub-colonies on foot while carrying a Garmin GPS (Legend Cx) to log the track taken. The person walking the perimeter of the sub-colonies maintained a buffer distance of approximately 2.5m between themselves and the breeding birds along the sub-colony boundary. This buffer distance was reduced to approximately 2m in the final shapefiles. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • Seven colonies with breeding Adelie colonies were mapped this season in the Kista Island group between the 17th and 27th of November 2015. Subcolonies were mapped by circumnavigating the perimeter on foot while carrying a Garmin GPS (Etrex30) to record the track. When mapping the perimeter of the subcolonies, generally an average buffer distance of 2.5 meters was maintained between the mapper and breeding birds. However on Klung Island one of the mappers was mapping at a distance between 3 and 5m. Buffer distances were reduced accordingly for the varying tracks to produce a combined average buffer distance of 2m in the final layer. Given this the boundary mapping for these two islands may vary in accuracy. Note when mapping was undertaken at Peterson Island (74507) two subcolonies were not mapped when compared to mapping in the 13/14 season. The larger of these colonies was missed but the smaller colony did not exist in the 15/16 season. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • Metadata record for data from ASAC Project 2897 See the link below for public details on this project. Public The aim of this multi-disciplinary proposal is to examine the molecular evolution of toxic proteins across the full taxonomical spectrum of venomous Antarctic marine animals. The project will create a comparative encyclopedia of the evolution of the venom system in the Antarctic marine animal kingdom and elucidate the underlying structure-function relationships between these toxic proteins. Through a process utilising cutting edge analytical techniques, such as cDNA cloning and molecular modelling, a feedback loop of bioactivity testing will be created to contribute substantially towards the area of drug design and development from toxic animal peptides. Project objectives: The aim of this project is to investigate the evolution of the molecular, structural and functional properties of Antarctic marine animal venom systems. This integrative project aims to investigate the origin and evolution of secreted proteins in the venom glands of toxic polar animals by means of: - Analysis of mechanisms of evolution in multigene families. - Phylogenetic analysis of evolutionary relationships among secreted proteins in the venom glands of major lineages; - Search for correlations between: (i) evolution of venom gland structure (ii) molecular evolution of venom components, and (iii) ecological specialisation of the animal - Bioactivity studies will be conducted upon representative purified or synthesised proteins. - A first ever comparison of the convergent strategies between Arctic and Antarctic endemic fauna. The results will help us to understand protein evolution, will cast light on the classic problem of how venom systems evolve, and may provide leads in the search for commercially-exploitable venom proteins. Taken from the 2008-2009 Progress Report: Progress against objectives: We have completed the genetic analyses of the specimens and sequence analyses. Phylogenetic positioning is robust other than a few deep level nodes. We are undertaking a second round of genetic analyses using different primers in order to resolve these nodes. Biochemical analyses of crude protein secretions from the posterior salivary (venom) glands has revealed temperature specific modifications of some of the venom components to adapt them to the polar conditions. We have tested the secretions in a battery of assays. We are now repeating those assays using purified proteins in order to determine which types are responsible for particular effects and also investigate synergistic interactions. Taken from the 2009-2010 Progress Report: Progress against objectives: We have undertaken genetic analyses of the specimens collected, and investigated specific adaptations of their venom systems. Results to-date include: - Antarctic octopuses are more genetically diverse than previously appreciated, including at least one new genus - an inverse relationship exists between the size of the venom gland and the size of the beak - their venoms have undergone temperature-specific adaptations

  • Metadata record for data from ASAC Project 2946. Public Shallow nearshore marine habitats are rare in the Antarctic but human activities have led to their contamination. Preliminary studies suggest the characteristics of Antarctica nearshore sediments are different to elsewhere and that contaminant partitioning and absorption, and hence bioavailability, will also be very different. Predictive exposure-dose-response (effects) models need to be established to provide the theoretical basis for the development of sediment quality guidelines to guide remediation activities. Such a model will be possible through the development of an artificial 'living' sediment, which can be used to understand physical and chemical properties that control partitioning and absorption of contaminants. Taken from the 2009-2010 Progress Report: Project objectives: 1. Collate and review existing knowledge on sediment properties in nearshore marine sediments in Antarctica to determine their physical, chemical and microbiological properties and identify gaps in our knowledge of sediment characteristics 2. Construct a range of artificial sterile sediments taking into account characteristics of naturally occurring nearshore sediments in the Antarctic. Examine physical and chemical properties of these sediments and understand the properties that control partitioning of contaminants by manipulation of bulk sediment composition and measuring the adsorption isotherms of important metal contaminants (Cu, Cd, Pb, As, Sn, Sb) in these artificial sediments 3. Produce 'living' sediments by inoculation of sterile sediments with Antarctic bacteria and diatoms that will support natural microbial communities. Examine physical and chemical properties of these sediments and understand the properties that control the partitioning and absorption of contaminants by manipulation of the bulk sediment composition and spiking metal contaminants into these artificial sediments. Progress against objectives: Using published literature the approximate composition of Antarctic sediments was determined. Representative sediment phases were collected form a uncontaminated environment, the chemical composition measured and absorption capacities of Cd and Pb established. The download file contains several excel spreadsheets. Some information about them is provided below: My =ref is reference in thesis EN =is endnote reference Nearby station = is closest known reference point to where samples collected TOC = total organic carbon TOM = Total organic matter BPC =biogenic particulate carbon TN = total nitrogen TP = Total phosphorus BSi = biogenic silica Ci = initial aqueous phase concentration qe = solid phase equilibrium concentration

  • This file contains a log of observations of skuas collected in the Casey region between 1972 and 1987. The hard copy of the log has been archived by the Australian Antarctic Division library.