Keyword

EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > PROTISTS > PLANKTON > PHYTOPLANKTON

31 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 31
  • Locations of sampling sites for ASAC project 40 on voyage 7 of the Aurora Australis in the 2001/2002 season. The dataset also contains information on chlorophyll, carotenoids, coccolithophorids and species identification and counts. The voyage acronym was LOSS. There are 203 observations in the collection. These data are available via the biodiversity database. The taxa represented in this collection are (species names at time of data collection, 2001-2002): Acanthoica quattrospina Calcidiscus leptoporus Coronosphaera mediterranea Emiliania huxleyi Gephyrocapsa oceanica Pentalamina corona Syracosphaera pulchra Tetraparma pelagica Triparma columacea subsp. alata Triparma laevis subsp. ramispina Triparma strigata Umbellosphaera tenuis

  • A list of taxa and observations of phytoplankton collected from the SAZ Sense voyage of the Aurora Australis - voyage 3 of the 2006-2007 season. These data are available via the biodiversity database. The collection contains 26 taxa and 562 observations. More information about SAZ SENSE: The overall objective is to characterise Southern Ocean marine ecosystems, their influence on carbon dioxide exchange with the atmosphere and the deep ocean, and their sensitivity to past and future global change including climate warming, ocean stratification, and ocean acidification from anthropogenic CO2 emissions. In particular we plan to take advantage of naturally-occurring, persistent, zonal variations in Southern Ocean primary production and biomass in the Australian Sector to investigate the effects of iron addition from natural sources, and CO2 addition from anthropogenic sources, on Southern Ocean plankton communities of differing initial structure and composition. SAZ-SENSE is a study of the sensitivity of Sub-Antarctic Zone waters to global change. A 32-day oceanographic voyage onboard Australia's ice-breaker Aurora Australis was undertaken in mid-summer (Jan 17 - Feb. 20) 2007 to examine microbial ecosystem structure and biogeochemical processes in SAZ waters west and east of Tasmania, and also in the Polar Frontal Zone south of the SAZ. The voyage brought together research teams from Australasia, Europe, and North America, and was led by the ACE CRC, CSIRO Marine and Atmospheric Research, and the Australian Antarctic Division. The overall goal is to understand the controls on Sub-Antarctic Zone productivity and carbon cycling, and to assess their sensitivity to climate change. The strategy is to compare low productivity waters west of Tasmania (areas with little phytoplankton) with higher productivity waters to the east, with a focus on the role of iron as a limiting micro-nutrient. The study also seeks to examine the effect of rising CO2 levels on phytoplankton - both via regional intercomparisons and incubation experiments.

  • These are phytoplankton pigment datasets collected on the BROKE voyage of the Aurora Australis during the 1995-1996 summer season. The readme file in the data download states: Data supplied by Dr Simon Wright. Details phytoplankton pigment data from BROKE. "BROKEPIGDBase.xls Contains 5 worksheets. 'Notes' repeats the information presented here. 'Key' describes the column headings, chemical names. 'Raw_Data' is the exact spreadsheet receieved from Dr Wright. 'Standard_sample_source' contains all the phyto-chemical data as taken from the CTD programme. 'Non_standard_sample_source' contains phyto-chemical data that seems to have been collected opportunistically, to test some assumptions. The details of the locations of the opportunistic samples are detailed in the column 'Sample_source'. Note- it is unsure whether the numbers in the CTD column describe the Station Number. This has to be verified. Converted into a MS Access database- 'BROKE_phytoplankton.mdb' by Natalie Kelly. This database contains 3 tables. One is a description of the column names, chemical etc. The other two contain both the Standard and Non-Standard Sample source phytochemical data. Natalie Kelly 19 November 2005"

  • These data come from a set of experiments conducted on the coastal waters near Davis Station in January 2017. The first set of data are from a transect near the Sorsdal glacier and out to sea, to characterise DMSP-mediated phytoplankton bacteria interactions along a salinity gradient. The second data set are from a series of incubation experiments to gain deeper insight into the role of various infochemicals in Antarctic phytoplankton-bacteria relationships. Specifically, DMSP, VitB12, Tryptophan and Methionine. The last data set is derived from two incubation experiments: a short term DMSP addition experiment to look at its uptake and utilisation by the microbial community; and a longer-term (5 day) stable isotope probing experiment to track DMSP through the lower trophic food web.

  • This dataset is derived from sediment trap records collected by Thomas Trull as part of the multidisciplinary SAZ Project initiated in 1997 by the Antarctic Cooperative Research Centre (ACE CRC) (Trull et al 2001b). The current submission provides data not included in Wilks et al. (submitted) 'Biogeochemical flux and phytoplankton assemblage variability: A unique year-long sediment trap record in the Australian Sector of the Subantarctic Zone.' This dataset contains three parts: Supplementary Table 1 describes sediment trap deployment information and current speed measured during deployment. Supplementary tables 2a and 2b are raw diatom counts of every species encountered at the site, at every sampling cup. Table 2a contains the 500 m trap depth record, while table 2b is for the 2000 m trap depth record. Supplementary table 3 contains environmental data (chlorophyll-a, photosynthetically active radiation, and sea surface temperature) for each cup record.

  • These data relate to a large-scale early-autumn phytoplankton bloom that occurred off Cape Darnley, East Antarctica, in March 2012. The bloom was detected by Dr Jan Lieser (Antarctic Climate and Ecosystems Cooperative Research Centre, ACE-CRC) through MODIS satellite and was opportunistically sampled from RSV Aurora Australis using the uncontaminated seawater line. Samples were analysed for protist species and abundances using light and scanning electron microscopy, and pigment analyses were conducted using high performance liquid chromatography. Additional water samples were taken for dissolved nutrient analyses. Specific details of the files are: Cape Darnley Protist Counts Samples were preserved with 1 % vol:vol Lugols iodine and stored in glass bottles in the dark at 4 degrees C. Protists were identified and counted using phase and Nomarski interference optics using Olympus IX71 and IX81 inverted microscopes at 400X to 640X magnification. Bright field optics were also used to discriminate taxa that contained chloroplasts. Protistan taxa were counted in 20 randomly chosen fields of view, except for highly abundant taxa that were counted in a subset of the field of view defined by an ocular quadrant (Whipple grid). Cell biovolumes and carbon conversion statistics were used to calculate the cell biomass of protistan taxa/groups. Cape Darnley Fluorometer Calibration Fluorometer measurements from the ships underway system were calibrated using chlorophyll a readings determined through high performance liquid chromatography. A linear relationship was established between fluorometer v HPLC chlorophyll a measurements at the same sites. The linear equation was then used to convert all underway fluorometry data from the voyage. Cape Darnley Bloom HPLC Pigments CHEMTAX summary Major phytoplankton groups at each site determined through analysis of pigments using high performance liquid chromatography and CHEMTAX. Methods were according to that of Wright et al. (2010). Cape Darnley Bloom Nutrients Dissolved nutrient concentrations. Samples were analysed by the Department of Primary Industries, Parks, Water and Environment, 18 St. Johns Avenue, Newtown, Tasmania 7008. Cape Darnley Underway Data VOYAGE_04_0_201112 Raw underway data from Aurora Australis in the bloom region Cape Darnley Underway Data Maps Maps of the underway data in the bloom region

  • A meta-analysis was undertaken to examine the vulnerability of Antarctic marine biota occupying waters south of 60 degrees S to ocean acidification. Comprehensive database searches were conducted to compile all English language, peer-reviewed journals articles and literature reviews that investigated the effect of altered seawater carbonate chemistry on Southern Ocean and/or Antarctic marine organisms. A document detailing the methods used to collect these data is included in the download file.

  • We studied the gut contents of four dominant copepod species (Calanoides acutus, Calanus propinquus, Calanus simillimus and Rhincalanus gigas) during the summer (2014-2015) along a latitudinal gradient (sampled every 5° between 40°S and 65°S) in the Indian sector of the SO. Diatoms were the most abundant food item found in the guts, comprising 24 of the 25 species found, and 15 were common to the four species of copepod studied. Diatoms accounted for the lowest proportion of the diet in the warmer, northern waters while all the large diatoms (e.g. Chaetoceros atlanticus, C. criophilus, C. dichaeta, Corethron spp.) were only found at 65oS. The most frequent species in the guts were the centric diatoms Thalassiosira spp. (4 to 57%) and the pennate diatoms Fragilariopsis kerguelensis (27 to 80%) and Trichoctoxon reinboldii (2 to 50%); proportions varied within a species across locations. These species were found at all sites examined, whereas some diatoms were specific to one copepod species: Asteromphalus spp. (in R. gigas), C. criophilus and C. dichaeta (in C. acutus), Nitzschia lecointei and N. sicula (in C. propinquus).

  • Overview of the project and objectives: Sea-ice phytoplankton is significantly enriched in 13C (delta 13C-POC) compared to pelagic phytoplankton in adjacent open waters because of carbon limitation in the brine pockets and due to physiological properties such as the presence of Carbon Concentrating Mechanisms (CCM) and/or the uptake of bicarbonate (HCO3-). Melting of sea-ice with release of sea-ice phytoplankton occurs during the growth season, so these isotopically heavy particles, if sinking out of the surface waters, can be expected to be found deeper in the water column. One hypothesis is that the natural carbon isotopic signal of brassicasterol (phytosterol, mainly diatom indicator) in the south Antarctic Bottom Water (AABW), a water mass which is influenced by the Seasonal Ice Zone (SIZ), is enriched compared to northern deep waters signal due to an enhanced contribution of sea-ice diatoms. The objective of this dataset acquisition is to gain information on the delta 13C signal of brassicasterol in sea-ice diatoms and further estimate the contribution of sea-ice algae release in the Southern Ocean biological pump. In the course of the expedition, a second choice has been done to look at the presence of particulate barium in the sea-ice. In the open ocean, presence of particulate barium in the mesopelagic layer is an indicator of remineralisation process. The main idea is that marine snow composed of detritical organic matter (aggregates, faecal pellets, etc.) provides micro-environment favorable for precipitation of excess Barium or Baxs (total particulate Ba minus the lithogenic part; mainly constituted of barite crystals, BaSO4): is there such Baxs components in the sea-ice? Methodology and sampling strategy: Sampling strategy follows ice stations deployment via Bio ice-core type. Most of the time we worked close to / directly on the Trace Metal site following precautions concerning TM sampling (clean suits etc.). When we worked close to the TM site, precautions were not such important because we don't need the same drastic precautions for our own sampling. We work together because we want to propose a set of data which helps to characterize the system of functioning in close relation with TM availability (for that, sampling location have to be as close as possible). Ice melted from ice-core sections (see attached files for more details) is filtered on precombusted GF-F filters (0.7 microns porosity) and filters are stored at -20 degrees C. For particulate Barium sampling, same protocol but filtration on PC filters 0.4 microns, dry over night and store at ambient temperature. At home laboratory (VUB, Brussels, Belgium), sterols samples are analysed via Gas Chromatography - Mass Spectrometer (GC-MS) and Gas Chromatography-combustion column-Isotope Ratio Mass Spectrometer (GC-c-IRMS) after chemical treatment. Barium sample are analysed via Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES).

  • Samples were collected using a prototype basket sampler that concentrated phytoplankton from the underway water supply in the OG lab onboard Aurora Australis. The sampler filtered water during transit, and the distance travelled and the approximate volume of water sampled was recorded. A phytoplankton net tow was collected at each station. The majority of imaging was undertaken using a Leica DMLB2 microscope with phase contrastand Leica ICC50 digital in body camera. Samples were preserved with either glutaraldhyde or Lugols iodine for later examination as well. Details of sample collected are included in the Voyage sample log.