Keyword

EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > ANIMALS/VERTEBRATES > FISH

65 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 65
  • This bibliography is a selected list of scientific papers collected by scientists in the ACE-CRC's Antarctic Marine Ecosystem research programme.

  • Metadata record for data from ASAC Project 2722 See the link below for public details on this project. Public The Convention for the Conservation of Antarctic Marine Living Resources (CCAMLR) aims to manage the harvesting of living resources in the Southern Ocean in a manner that is sustainable to the harvested species, dependent species and ecosystem processes. The krill fishery is one of the major fisheries in the Southern Ocean. Application of CCAMLR's policy in management of the krill fishery requires sound scientific information on both krill and krill-dependent (predator) species. This program aims to provide the scientific information on krill predators required by CCAMLR for sustainable management of the krill fishery through research, survey and monitoring activities. Taken from the 2009-2010 Progress Report: Project objectives: The Convention for the Conservation of Antarctic Marine Living Resources (CCAMLR) aims to manage the harvesting of living resources in the Southern Ocean in a manner that is sustainable to the harvested species, dependent species and ecosystem processes. The krill fishery is one of the major fisheries in the Southern Ocean. Application of CCAMLR's policy to management of the krill fishery requires sound scientific information on both krill and krill-dependent (predator) species. This program of work aims broadly to provide the scientific information on krill predators required by CCAMLR for sustainable management of the krill fishery in the Australian Antarctic Territory against a background of other impacts such as climate change, and compliments separate SOE projects aimed at krill itself. This program is related to the previous multi-year project number 2205 (Adelie penguin research and monitoring in support of the CCAMLR Ecosystem Monitoring Project (CEMP)) but recognises and addresses recent developments in CCAMLR that include (i) the current development of a krill management procedure, (ii) a review of outputs from past CEMP work and recognition of the likely need to re-design CEMP to meet the needs of the new krill management procedure, and (iii) the need to estimate predator consumption of krill as part of the krill management procedure. Although the previous project 2205 focussed on Adelie penguins in the Mawson region exclusively, this new program will include consideration of additional species and regions to allow improvements in both ecosystem monitoring and estimation of krill consumption. The program was approved in 2005 as a multi-year ASAC project with four major sub-programs or projects which have strong methodological and practical cross-linkages and overlap. The projects and their objectives are: (1) Development of cost-effective methods for surveying and monitoring predator populations at the large spatial scales required by CCAMLR, (2) Estimation of the abundance of krill predators in CCAMLR Statistical Areas 58.4.1 and 58.4.2 (which together span the width of the Australian Antarctic Territory), (3) Assessment of spatio-temporal variability in predator performance parameters to enable the design of an effective and efficient monitoring program, and to examine metapopulation dynamics (4) Continuation of selected aspects of project 2205 to (i) improve estimates and understanding of temporal variability and population dynamics and (ii) continue the application of CEMP. We propose to continue these projects in 2008/09 and commence some additional projects. Projects (1) and (2) will be expanded beyond Adelie penguins to include some species of flying seabirds. Additional work related to the AAD's management of the Rookery Islands Specially Protected Area is proposed which would be undertaken in collaboration with the AADs environmental policy section, and aims to assess the status of the Southern Giant Petrel. It would be undertaken in conjunction with planned surveys of Adelie penguins and some flying seabird species in the Rookery Islands (project 2). Details of the work will be outlined in a separate proposal submitted by the AAD environmental policy section. A additional project is related to an IPY approved project focussing on Adelie penguins as indicators in the Southern Ocean. The objective of this new project is to co-ordinate some aspects of the work of Adelie penguin researchers around Antarctica to improve understanding of broad-scale processes in the Southern Ocean. A planning meeting in May 2007 had to be postponed until September 2007 and consequently it is not yet possible to outline the details of this project. We will provide project details as soon as possible after the September 2007 meeting and request that a late submission be accepted for this project. Progress against objectives: (1) Implementation and further development of cost-effective methods for surveying and monitoring predator populations at the large spatial scales required by CCAMLR. Camera technology has been developed and is now being used to monitor Adelie penguin populations on several islands in the Mawson and Davis areas. Methods for cost-effective development of regional population size have also been developed and applied in the Mawson and Davis areas. Flying seabirds have been incorporated in the monitoring program by developing and implementing monitoring methods of snow petrel on Bechervaise Island. (2) Estimation of the abundance of krill predators in CCAMLR Statistical Areas 58.4.1 and 58.4.2 (which together span the width of the Australian Antarctic Territory). Aerial surveys were undertaken of Adelie penguin populations in the Vestfold Hills and Rauers Islands. Reconnaissance surveys of Adelie penguin distribution were conducted by the CASA aircraft between Casey and Mirny. Ground surveys of Adelie penguin populations were undertaken in the Mawson region (3) Assessment of spatio-temporal variability in predator performance parameters to enable the design of an effective and efficient monitoring program, and to examine metapopulation dynamics. Population surveys and the use of cameras at multiple sites in the Mawson area are providing data on Adelie penguin meta-population dynamics. (4) Continuation of selected aspects of project 2205 to (i) improve estimates and understanding of temporal variability and population dynamics and (ii) continue the application of CEMP. Measurement of Adelie penguin population size, foraging trip duration, breeding success and survival at Bechervaise Island continued in 2009/10 (5) Assessment of the winter foraging distribution of Adelie penguins. Satellite trackers were successfully deployed on 15 fledgling Adelie penguins.

  • A series of 6 sets of midwater trawls in Prydz Bay. Each trawl set took place over a 24 hour period to test the extent of diurnal vertical migration in P. antarcticum. Part of the KROCK cruise of Aurora Australis. These data have been incorporated into an 'historical fish database' available for download at the URL given below (Access Database). These data have also been included in the Australian Antarctic Data Centre's Biodiversity database, and have been submitted to GBIF and OBIS (Global Biodiversity Information Facility, and Ocean Biogeographic Information System). The fields in this dataset are: Species Cruise Start Date End Date Sampling Date Vessel Name Fishing Area Latitude Longitude Gear Length Weight Sex Gonad Weight Stomach Weight

  • Sampling strategy: Samples from trawls or sledges are sieved on the trawl deck then sorted in the wet lab per taxonomic group. Sorting may vary from high taxonomic levels (order, family) to specific ones according to expertise on board. For some taxa, sampling includes: up to 10 voucher specimens with a unique batch number; photos; tissue samples in 80% ethanol for DNA analysis (Barcoding and Phylogeny); 30 samples minimum for population genetics (for abundant species); sampling for isotopic measures; fish chromosomes preparations; primary fish cell lines and cryopreservation of fish tissues for permanent cell lines The database was intended to contain information about stations, events, gear, all material collected and associated samples listed above. currently only contains information on material collected and samples. Data was recorded on log sheets then transcribed into an Oracle database called cabo. Tailor made user interace for entering data. No export functionality. SQL database dump has been provided but there was no-one on the voyage to elaborate on the structure, this was promised post voyage along with some simple data exports to match the log sheets, so we have access to the data without the unfriendly database.

  • In March 2018, 23 environmental DNA (eDNA) samples (2 L of filtered seawater) were collected between Hobart, Tasmania and subantarctic Macquarie Island. These samples were processed using six different genetic metabarcoding markers targeting different taxonomic groups within the metazoan clade: A broad cytochrome c oxidase subunit I (COI) marker targeting all metazoans, and five different 16S markers targeting fish, cephalopods and crustaceans (one degenerate marker), fish (two markers of different lengths), cephalopods (one marker) and crustaceans (one marker). The aim of this study was to identify an ideal set of molecular markers to identify as many metazoan species as possible from small environmental samples, with a particular focus on vertebrates, crustaceans and cephalopods. The data and methods are described in the word file "V4 2018 eDNA group specific markers.docx", results are summarised in the excel file "Marker.detection.xlsx" and additional sample information is in the excel files "2018_11_07_eDNA-sample-info.xls" and "sample.map.csv". Each genetic marker used in this study has its own folder, containing the raw FASTQ sequencing data, the processed FASTA sequencing data, the bioinformatics processing pipeline, the zOTU fasta file, BLAST output, MEGAN output and curated zOTU table. For further explanations please refer to the word file "V4 2018 eDNA group specific markers.docx".

  • This research was a manipulative experiment on autoline ling vessels in the New Zealand ling fishery. The vessels were the Janas and the Avro Chieftain. The experiment examined both seabird bycatch data and fish catch data, as well as operational aspects of fishing with integrated weight longline. The data is a little bit complicated and it is essential that any users be familiar with the methodologies in the scientific paper that was published from the work. That will provide a lot of necessary guidance as well as a context for the research. The data covers 2002 and 2003, as indicated on the files. The data submitted includes relevant information of i) seabird by-catch; ii) catch rates of target fish; iii) catch rates on non-target fish. There is replication in some of the data sheets provided. There are headers in each data file that are explanatory.

  • This dataset contains results from the Aurora Australis Voyage 6 1990-91. Surveys of krill and other zooplankton were taken in Prydz Bay, Antarctica between January and February 1991. Species identity and abundance data, length, age, growth rate and mortality rate data were obtained. The major species investigated were Euphausia superba, Euphausia frigidia, Euphausia crystallorophias and Thysanoessa macrura. Other pteropods and cephalopods were also studied. This dataset is a subset of the full cruise.

  • This dataset contains scanned copies of the RMT and bottom trawl logs from Voyage 6 1990-91 (AAMBER2) of the Aurora Australis. This was primarily a marine science voyage. Surveys of krill, other zooplankton and pelagic fish were taken in Prydz Bay, Antarctica between January and February 1991. 177 midwater trawls were successfully completed at 59 stations. Midwater fish were sampled using an International Young Gadoid Pelagic Trawl (IYGPT). At each station, hauls were taken at depths of 20-30m, approximately halfway down the water column, and 20-30m above the bottom. At six stations, the lowest sample was duplicated using a light fitted to the net. Where samples were made off the shelf, standard depths of 20-30m, 400m, and 800m were fished. All hauls were of 30 minutes fishing time. Bottom trawls were made using a 35m headline length otter trawl fitted with 40cm diameter bobbin gear. A 2" mesh cod end liner was used to retain small fish. On both nets, a Simrad trawl surveillance sonar was used.

  • Data show length (cm) and weight (g) of Trematomus bernacchii from four sites along a gradient south in the direction of the current from the Davis Station wastewater outfall (Outfall (0km); Torkler Rocks (1km); Warriner Island (4km) and Kazak Island (9km)) and two reference sites north of the outfall (Long Fjord (9kmN) and Bandits Hut (16km N). Fish were collected in the summer of 2012/13 using line and box traps. Fish were transported immediately back to the lab for analysis.

  • This integrated stock assessment for the Patagonian toothfish (Dissostichus eleginoides) fishery at the Heard Island and the McDonald Islands in CCAMLR Division 58.5.2, with data until end of July 2015, is based on the best available estimates of model parameters, the use of abundance estimates from a random stratified trawl survey (RSTS), longline tag-release data from 2012-2014 and longline tag-recapture data from 2013-2015, and auxiliary commercial composition data to aid with the estimation of year class strength and selectivity functions of the trawl, longline and trap sub-fisheries.All model runs were conducted with CASAL version 2.30-2012-03-21 (Bull et al. 2012). The assessment model leads to an MCMC estimate of the virgin spawning stock biomass B0 = 87 077 tonnes (95% CI: 78 500-97 547 tonnes). Estimated SSB status in 2015 was 0.64 (95% CI: 0.59-0.69). Using this model, a catch limit of 3405 tonnes satisfies the CCAMLR decision rules. Similarly to the 2014 assessment, the projected stock remains above the target level for the entire projection period.