Keyword

EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CARBON DIOXIDE

44 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 44
  • General description: The associated file contains sediment pigment data from the antFOCE project 4127. Units: all pigment data in ug/g, 0 = below detection limit of HPLC. Sample collection details: At the start and end of the antFOCE experiment, four sediment core samples were taken from inside and outside each chamber or open plot by divers. The top 1 cm of the cores was then removed and placed in the dark, first at -20ºC for 2 hours, then at -80ºC until analysis at the Australian Antarctic division. Pigment analysis Frozen samples were transported under liquid N2 to a freeze drier (Dynavac, model FD-5), in pre-chilled flasks with a small amount of liquid N2 added. Custom made plumbing fitted to the freeze drier enabled samples to be purged with N2 to prevent photo-oxidation up until solvent extraction. Prior to pigment extraction five 2 g stainless steel ball bearings were added to homogenise the freeze dried sediment. The samples were bead beaten for 1 minute (Biospec products). Subsamples (~0.05 g) were immediately transferred to cryotubes with 700 µl of dimethylformamide (DMF) for two hours. Samples were kept at -80ºC and under a safe light (IFORD 902) at all times. All pigment concentrations are standardised to sediment weight. Pigments were extracted with dimethylformamide (DMF 700 µl) over a two hour period at -20ºC. Zirconia beads, and 100 µl of Apo 8 and an internal standard were added to each sub-sample. After a two hour extraction, sub-samples were bead beaten for 20 seconds and then placed in a centrifuge with filter cartridge inserts for 14 minutes at 2500 rpm at -9ºC to separate the solvent from the sediment. The supernatant was transferred into to a vial and placed in a precooled rpHPLC autosampler. The rpHPLC system used is described in Hodgson et al. (1997). Pigment detection was at 435, 470 and 665 nm for all chlorophylls and carotenoids, with spectra from 300–700 nm being collected every 0.2 seconds. Pigment identification was carried out using a combination of rpHPLC and normal phase HPLC retention times, light absorbance spectra and reference standards (see Hodgson et al., 1997). These techniques assisted in the accurate identification of pigments and their derivatives to a molecular level and enabled several pigment derivatives to be analysed. The HPLC was previously calibrated with authentic standards and protocols outlined in SCOR (1988). Data set headers: (A)Treatment: Example code 4127_SOP7_6-1-15_PlotB_R1, = prodject code_Standard Operating Procedure(SOP) used to collect samples(see antFOCE parent file)_ Date_Chamber/plot(A,B,C,D)_replicate core within Chamber/plot(1,2,3) (B) BB carot= BB caroten, type of pigment detected by HPLC. See Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more details. (C) Chl c1 = Chlorophyll derivatives see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (D) Chl c2 = Chlorophyll derivatives see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (E) Chl c3 = Chlorophyll derivative see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (F) Chla = Chlorophyll a see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (G) Ddx =Diadinoxanthin see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information (H) dtx = Diatoxanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information (I) epi = Chlorophyll epimer pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (j) Fuc = Fucoxanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (k) Gyro2 = Gyroxanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (L) Pras = Prasanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (m) Zea = Zeaxanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (n) Date = Samples taken at the start of antFOCE experiment or at the end (o) chamber = The antFOCE chamber (A,B,C,D) (p) Treatment = The associated pH level in chambers (Acidified ~7.8, Control ~8.2) (Q) Position = Samples were taken within chambers and outside chambers (outside, inside) (r) rep= Subsamples were taken within each chamber/position (R1=replicate one, R1-R4) Spatial coordinates: 66.311500 S, 110.514216 E Dates: between 1/12/2014 and 1/3/2015 Timezone:UTC+11

  • The embryonic development of Antarctic krill (Euphausia superba) is sensitive to elevated seawater CO2 levels. This data set provides the experimental data and WinBUGS code used to estimate hatch rates under experimental CO2 manipulation, as described by Kawaguchi et al. (2013). Kawaguchi S, Ishida A, King R, Raymond B, Waller N, Constable A, Nicol S, Wakita M, Ishimatsu A (2013) Risk maps for Antarctic krill under projected Southern Ocean acidification. Nature Climate Change (in press) Circumpolar pCO2 projection. To estimate oceanic pCO2 under the future CO2 elevated condition, we computed oceanic pCO2 using a three-dimensional ocean carbon cycle model developed for the Ocean Carbon-Cycle Model Intercomparison Project (2,3) and the projected atmospheric CO2 concentrations. The model used, referred to as the Institute for Global Change Research model in the Ocean Carbon-Cycle Model Intercomparison Project, was developed on the basis of that used in ref. 4 for the study of vertical fluxes of particulate organic matter and calcite. It is an offline carbon cycle model using physical variables such as advection and diffusion that are given by the general circulation model. The model was forced by the following four atmospheric CO2 emission scenarios and their extensions to year 2300. RCP8.5: high emission without any specific climate mitigation target; RCP6.0: medium-high emission; RCP 4.5: medium-low emission; and RCP 3.0-PD: low emission (1). Simulated perturbations in dissolved inorganic carbon relative to 1994 (the Global Ocean Data Analysis Project (GLODAP) reference year) were added to the modern dissolved inorganic carbon data in the GLODAP dataset (5). To estimate oceanic pCO2, temperature and salinity from the World Ocean Atlas data set (6) and alkalinity from the GLODAP data set were assumed to be constant. Marine ecosystems of the Southern Ocean are particularly vulnerable to ocean acidification. Antarctic krill (Euphausia superba; hereafter krill) is the key pelagic species of the region and its largest fishery resource. There is therefore concern about the combined effects of climate change, ocean acidification and an expanding fishery on krill and ultimately, their dependent predators—whales, seals and penguins. However, little is known about the sensitivity of krill to ocean acidification. Juvenile and adult krill are already exposed to variable seawater carbonate chemistry because they occupy a range of habitats and migrate both vertically and horizontally on a daily and seasonal basis. Moreover, krill eggs sink from the surface to hatch at 700–1,000m, where the carbon dioxide partial pressure (pCO2 ) in sea water is already greater than it is in the atmosphere. Krill eggs sink passively and so cannot avoid these conditions. Here we describe the sensitivity of krill egg hatch rates to increased CO2, and present a circumpolar risk map of krill hatching success under projected pCO2 levels. We find that important krill habitats of the Weddell Sea and the Haakon VII Sea to the east are likely to become high-risk areas for krill recruitment within a century. Furthermore, unless CO2 emissions are mitigated, the Southern Ocean krill population could collapse by 2300 with dire consequences for the entire ecosystem. The risk_maps folder contains the modelled risk maps for each of the climate change scenarios (i.e. Figure 4 in the main paper, and Figure S2 in the supplementary information). These are in ESRI gridded ASCII format, on a longitude-latitude grid with 1-degree resolution. Refs: 1. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213-241 (2011). 2. Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681-686 (2005). 3. Cao, L. et al. The role of ocean transport in the uptake of anthropogenic CO2. Biogeosciences 6, 375-390 (2009). 4. Yamanaka, Y. and Tajika, E. The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: Studies using an ocean biogeochemical general circulation model. Glob. Biogeochem. Cycles 10, 361-382 (1996). 5. Key, R. M. et al. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031 (2004). 6. Conkright, M. E. et al. World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures CD-ROM Documentation (National Oceanographic Data Center, 2002).

  • Pulse Amplitude Modulation (WaterPAM, Walz) was used to measure the response of the sea ice brine microalgae to CO2 stress. All data was reported in WinControl software and follows standard formats. Three incubation experiments were carried out at SIPEX stations 4 (expt 1) 7 (expt 3) and 8 (expt 4). File nomenclature TO: time zero TR1,2,3 refers to times 2,3 and 4 respectively In expt 4 the coding refers to hours since beginning of experiment Each file contains data in the same columns: Important results include Column E: F Column F: Fm Column G: Fv/Fm Column H: rETR Column I: PAR

  • Continuous underway measurements of sea surface (7 metres depth)and atmospheric carbon dioxide. Data format .txt extension comma delimited files. 1 file per 24 hours. Naming similar to AA03607_001-0000 (voyage_julian day_HH:MM). Excel readable format. 58 columns of data. Measurements were made on the CEAMARC voyage of the Aurora Australis - voyage 3 of the 2008-2008 summer season.

  • Refer to antFOCE report section 4.4.5 for deployment, sampling and analysis details. https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127 One camera and flash unit was mounted on the top middle section of each chamber to take one photo of the sediment every 30 minutes. The download file contains two folders with the photos taken from the 28th of January to the 23rd of February 2015 – one for Chamber A and one for Chamber C. A video time-lapse compilation of the Chamber A images is also included. Malfunctioning cameras deployed on Chamber A and C and on B and D during this same period and at other times, meant that no useful images were obtained. Background The antFOCE experimental system was deployed in O'Brien Bay, approximately 5 kilometres south of Casey station, East Antarctica, in the austral summer of 2014/15. Surface and sub-surface (in water below the sea ice) infrastructure allowed controlled manipulation of seawater pH levels (reduced by 0.4 pH units below ambient) in 2 chambers placed on the sea floor over natural benthic communities. Two control chambers (no pH manipulation) and two open plots (no chambers, no pH manipulation) were also sampled to compare to the pH manipulated (acidified) treatment chambers. Details of the antFOCE experiment can be found in the report – "antFOCE 2014/15 – Experimental System, Deployment, Sampling and Analysis". This report and a diagram indicating how the various antFOCE data sets relate to each other are available at: https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127

  • Synchrotron based FTIR macromolecule profiles of 5 diatom species from the AAS_4026 ocean acidification project. Data represent the peak areas for wavenumbers related to key macromolecules. For details on methods see Duncan et al. (2021) New Phytologist. Experimental design and mesocosm set up Mesocosm set up and conditions were as described previously (Deppeler et al., 2018; Hancock et al., 2018). Briefly, a near-shore, natural Antarctic microbial community was collected from an ice-free area among broken fast ice approximately 1km offshore from Davis Station, Antarctica (68° 35ʹ S, 77° 58ʹ E) on 19 November 2014. This community was incubated in 6 x 650L polyurethane tanks (mesocosms) across a gradient of fCO2 levels (343, 506, 634, 953, 1140 and 1641 μatm; denoted M1 – M6). These fCO2 levels corresponded to pH values ranging from 8.17 to 7.57. Temperature was maintained at 0.0 °C ± 0.5 °C and the mesocosms were stirred continuously by a central auger (15 r.p.m.) for gentle mixing and covered with an air-tight lid. Irradiance was initially kept low (0.8 ± 0.2 μmol photons m-2s-1), while cell physiology was left to acclimate to increasing fCO2 levels (over 5 days). When target fCO2 levels were reached in all six mesocosms, light was gradually increased (days 5-8) to 89 ± 16 μmol photons m-2s-1 on a 19 h:5 h light:dark cycle, to mimic current natural conditions. To generate the gradient in carbonate chemistry, filtered seawater saturated with CO2 was added to five of the mesocosms. Daily measurements were taken to monitor pH and dissolved inorganic carbon (DIC). For details of fCO2 manipulations, analytical procedures and calculations see Deppeler et al., (2018). Samples for physiological and macromolecular measurements in this study were taken on day 18, at the end of the incubation period (Deppeler et al., 2018). Cell volume Cell volume was determined for selected taxa from M1 and M6 via light microscopy. Cells were imaged on a calibrated microscope (Nikon Eclipse Ci-L, Japan) and length, width and height (24-77 cells per taxa) determined using ImageJ software (Schneider et al., 2012). Biovolume was then calculated according to the cell morphology and corresponding equations described by Hillebrand et al (1999). Macromolecular content by FTIR The macromolecular composition of the selected diatom taxa sampled from all six mesocosms on day 18 was determined using Synchrotron based FTIR microspectroscopy on formalin-fixed (2% v/v final concentration) cells. Measurements were made on hydrated cells and processed according to previous studies (Sackett et al. 2103; 2014; Sheehan et al. 2020). Briefly, fixed cells were loaded directly onto a micro-compression cell with a 0.3 mm thick CaF2 window. Spectral data of individual cells (between 15-49 cells per taxon per mesocosm) were collected in transmission mode, using the Infrared Microspectroscopy Beamline at the Australian Synchrotron, Melbourne, in November 2015. Spectra were acquired over the measurement range 4000− 800 cm−1 with a Vertex 80v FTIR spectrometer (Bruker Optics) in conjunction with an IR microscope (Hyperion 2000, Bruker) fitted with a mercury cadmium telluride detector cooled with liquid nitrogen. Co-added interferograms (n = 64) were collected at a wavenumber resolution of 6 cm−1s. To allow for measurements of individual cells, all measurements were made in transmission mode, using a measuring area aperture size of 5 × 5 µm. Spectral acquisition and instrument control were achieved using Opus 6.5 software (Bruker). Normalised spectra of biologically relevant regions revealed absorbance bands representative of key macromolecules were selected. Specifically, the amide II (~1540 cm-1), Free Amino Acid (~1452 cm-1), Carboxylates (~1375 cm-1), Ester carbonyl from lipids (~1745 cm-1) and Saturated Fatty Acids (~2920 cm-1) bands were selected. Infra-red spectral data were analysed using custom made scripts in R (R Development Core Team 2018). The regions of 3050-2800, 1770-1100 cm-1, which contain the major biological were selected for analysis. Spectral data were smoothed (4 pts either side) and second derivative (3rd order polynomial) transformed using the Savitzky-Golay algorithm from the prospectr package in R (Stevens and Ramirez-Lopez, 2014) and then normalised using the method of Single Normal Variate (SNV). Macromolecular content for individual taxon was estimated based on integrating the area under each assigned peak, providing metabolite content according to the Beer-Lambert Law, which assumes a direct relationship between absorbance and relative analyte concentration (Wagner et al., 2010). Integrated peak areas provide relative changes in macromolecular content between samples. Because of the differences in absorption properties of macromolecules, peak areas can only be used as relative measure within compounds.

  • The Southern Ocean is one the most significant regions on earth for regulating the build up of anthropogenic CO2 in the atmosphere, and the capacity for carbon uptake in the region could be altered by climate change. The project aims to establish a time series of anthropogenic carbon accumulation. The work will be used to identify processes regulating the CO2 uptake and to test models that predict future uptake. These data were collected on the VMS voyage of the Aurora Australis in the 2010-2011 field season. Data include pH, carbon dioxide, alkalinity and spectrometer data.

  • Gas Flux over Sea Ice ------------- We observed amount of gas exchange between sea ice and atmosphere. At the ice station, semi-automated chambers developed in Japan, were used for measurement of air-sea ice CO2 flux. These chambers could be used to examine spatial variability and also temporal variability of gas flux over sea ice. Samples were also taken from the snow and ice in order to measure CH4 and VOC, however these analyses will be conducted post-voyage. This metadata record will be updated in future to reflect the analysis. The chambers are designed to be placed over a snow and sea ice. When the lid is closed, CO2 concentration was measured. The opening and closing functions of the chambers are automated and were set to a 30 minutes interval. CO2 concentration (as voltage) were recorded in the data logger (CR10X, Campbell Scientific Inc.) and downloaded after the experiments. Raw data are contained in the excel files. During the CO2 flux measurement, we collected the snow, sea ice, brine/slush and under-ice water. Snow and sea ice samples were melted after sampling in PVDF film bags (like Tedlar bags in order to avoid gas exchange with ambient air) in 4C temperature and treated for analysis. A chemical analysis for carbonate systems and VOC (water), salinity, nutrient, pigment and oxygen isotopic ratio samples will take place in Japan after the voyage for analysis. During the cruise, to examine ice growth processes, we made sea ice thin-section to classify the ice cores into granular ice, columnar ice or mixed granular and columnar ice (Eicken and Lange, 1989). The CO2 data are contained in Excel spreadsheets. These use Japanese column headings. Calcium Carbonate (CACO3.6H20) as Ikaite in Sea Ice and Snow ----------- At each listed ice station we collected sea-ice cores using a Kovacs 9cm ice corer. Cores were sectioned into 10-20cm and melted at 4 degrees C, filtered and dried for later analysis of Calcium Carbonate in a home laboratory using an ICP, which produces text file outputs (included). Also included is a spreadsheet listing the cores, and the calcium carbonate measurements.

  • During the ice stations, sea ice, brine/slush, snow and under-ice water sampling were collected for CO2 concentration measurement as dissolved inorganic carbon (DIC). Ice cores were collected using a Kovacs 9 cm diameter ice corer. The ice core for DIC was cut directly after retrieval with a stainless steel folded saw. The core was cut generally into 10 cm sections (20 cm when ice cores were higher than 200 cm) and put into zip-lock polyethylene bags. Care was taken to use laboratory gloves when collecting the cores. For brine sampling, partial core holes were drilled into the ice (so called sackholes), usually to a depth of 25 cm and 50 cm. At site with flooding, brine collection was not possible, and samples of the surface slush were collected instead. Slush was collected by plastic shovel. Snow samples were also collected. Under-ice water was collected with a Teflon water sampler (GL Science Inc., Japan) 1, 3, 5 m below the bottom of the sea ice. In addition, CTD water sampling was examined at each station. The cores were taken back to the ship, and transferred to the gas tight bag (GL Science Inc., Japan), and then ice was melted at about +4 degrees C in a refrigerator. Melted samples were sub-sampled for each component. The snow samples were treated in the same manner as the sea ice samples for further analysis. The dissolved inorganic carbon (DIC) of seawater was determined by coulometry [Johnson et al. 1985] using a coulometer (CM5012, UIC Inc., Binghamton, NY, USA). DIC measurement was calibrated with reference seawater materials (Batch AG; KANSO Technos Co., Ltd., Osaka, Japan) traceable to the Certified Reference Material distributed by Prof. A. G. Dickson (Scripps Institution of Oceanography, La Jolla, CA, USA). The standard deviation for DIC calculated from 20 subsamples taken from a reference seawater material (DIC = 2084.5 micro mol L-1) was 1.4 micro mol L-1. Data available: excel files containing sampling station name, dates, and DIC concentration.

  • Refer to antFOCE report section 4.5.1 for deployment, sampling and analysis details. https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127 The download file contains an Excel workbook with one data spreadsheet and one of notes relevant to the data. The data are the total number of each motile organism collected from 2 recruitment tiles deployed in chambers or open plots during the antFOCE experiment. The 2 tiles were deployed together in a metal stand in either a horizontal or vertical orientation. Background The antFOCE experimental system was deployed in O’Brien Bay, approximately 5 kilometres south of Casey station, East Antarctica, in the austral summer of 2014/15. Surface and sub-surface (in water below the sea ice) infrastructure allowed controlled manipulation of seawater pH levels (reduced by 0.4 pH units below ambient) in 2 chambers placed on the sea floor over natural benthic communities. Two control chambers (no pH manipulation) and two open plots (no chambers, no pH manipulation) were also sampled to compare to the pH manipulated (acidified) treatment chambers. Details of the antFOCE experiment can be found in the report – “antFOCE 2014/15 – Experimental System, Deployment, Sampling and Analysis”. This report and a diagram indicating how the various antFOCE data sets relate to each other are available at: https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127