From 1 - 10 / 29
  • This video is supplementary data for the publication entitled 'Internal physiology of live krill revealed using new aquaria techniques and mixed optical microscopy and optical coherence tomography (OCT) imaging techniques'. The video is high resolution microscopy video of a live krill captured in the krill containment trap placed within the water bath. File size: 1.8 GB, 32 s duration. The optical microscopy was carried out using a Leica M205C dissecting stereomicroscope with a Leica DFC 450 camera and Leica LAS V4.0 software to collect high-resolution video. The experimental krill research project is designed to focus on obtaining life history information of use in managing the krill fishery - the largest Antarctic fishery. In particular, the project will concentrate on studies into impacts of climate change on key aspects of krill biology and ecology.

  • These aerial survey data of southern right whales (Eubalaena australis) off southern Australia were collected in August 2017. Such annual flights in winter/spring between Cape Leeuwin (Western Australia) and Ceduna (South Australia) have now been conducted over a 25-year period 1993-2017. These surveys have provided evidence of a population trend of around 6% per year, and a current (at 2014) population size of approximately 2300 of what has been regarded as the 'western' Australian right whale subpopulation. With estimated population size in the low thousands, it is presumed to be still well below carrying capacity. No trend information is available for the 'eastern' subpopulation of animals occurring around the remainder of the southern Australian Coast, to at least as far as Sydney, New South Wales and the populations size is relatively small, probably in the low hundreds. A lower than expected 'western' count in 2015 gives weak evidence that the growth rate may be starting to show signs of slowing, though an exponential increase remains the best description of the data. If the low 2015 count is anomalous, future counts may be expected to show an exponential increase, but if it is not, modelling growth as other than simple exponential may be useful to explore in future

  • These aerial survey data of southern right whales (Eubalaena australis) off southern Australia were collected in August 2018. Such annual flights in winter/spring between Cape Leeuwin (Western Australia) and Ceduna (South Australia) have now been conducted over a 26-year period 1993-2018. These surveys have provided evidence of a population trend of around 6% per year, and a current (at 2014) population size of approximately 2300 of what has been regarded as the 'western' Australian right whale subpopulation. With estimated population size in the low thousands, it is presumed to be still well below carrying capacity. No trend information is available for the 'eastern' subpopulation of animals occurring around the remainder of the southern Australian Coast, to at least as far as Sydney, New South Wales and the populations size is relatively small, probably in the low hundreds. A lower than expected 'western' count in 2015 gives weak evidence that the growth rate may be starting to show signs of slowing, though an exponential increase remains the best description of the data. If the low 2015 count is anomalous, future counts may be expected to show an exponential increase, but if it is not, modelling growth as other than simple exponential may be useful to explore in future.

  • Aerial surveys of southern right whales (Eubalaena australis) were undertaken off the southern Australian coast to monitor the recovery of this endangered species following extreme 19th and 20th Century commercial whaling. The aerial survey was undertaken in the coastal waters from Perth (Western Australia) to Ceduna (South Australia) between the 12th and 17th August 2021, to maintain the annual series of surveys and inform the long-term population trend. The maximum whale counts for each leg of the survey flights between Cape Leeuwin and Ceduna, and consisted of a total 643 southern right whales sighted across the survey area (270 cow-calf pairs and 103 unaccompanied whales). The subsequent population estimate for the Australian ‘south-western’ population is 2,549 whales, which represents the majority of the Australian population given the very low numbers in the ‘south-eastern’ subpopulation. The population long-term trend data is indicating recent years (from 2007) are showing greater inter-annual variation in whale counts. To evaluate the recovery of the southern right whale population, it will be critical to collect long-term data on the annual variability in whale numbers related to the non-annual female breeding cycle and identify possible impacts on this by short-term climate dynamics, longer-term climate change and/or anthropogenic threats.

  • Annual aerial surveys of southern right whales have been conducted off the southern Australian coast, between Cape Leeuwin (W.A.) and Ceduna (S.A.) over a 28 year period between 1993 and 2020, to monitor the recovery of this species following commercial whaling. We conducted an aerial survey of southern right whales between the 20th and 24th August 2020, to continue these annual series of surveys and inform the long-term population trend. The comparable count for the 2020 survey utilised the maximum count for each leg and incorporated a correction for the unsurveyed area between Head of the Bight to Ceduna due to the inability to cover whole survey as a result of COVID-19 restrictions between State borders. This resulted in 384 individuals, consisting of 156 cows accompanied by calves of the year and 72 unaccompanied adults. Of these, 126 images of individual whales have been selected for photo-identification matching. This is a significant decrease in overall sightings that has not been observed for over 13 years when compared to long term trend data for the population; last seen in 2007 (N = 286 individuals). The subsequent population estimate for the Australian ‘western’ subpopulation is 2,585 whales, which is also a significant decrease in estimated population size from 3,164 in 2019 to 2,585 in 2020. The extremely low number of unaccompanied adults (N = 68) had the greatest impact on the overall number of sightings in 2020, and is the lowest number sighted since 1993 (N = 47). Previous surveys in 2007 and 2015 have been noted as years of low whale counts that had been deemed anomalous years, although the low numbers from this survey questions this and may suggest the 3-year female breeding cycle is becoming more unpredictable. Considerable inter-annual variation in whale numbers, and cycles in population growth, makes it difficult to detect consistent and reliable changes in abundance from one year to the next, or even over longer periods of time. This severely inhibits our ability to identify immediate threats to the population and strongly supports continued annual population surveys.

  • Metadata record for data from ASAC Project 1212. See the link below for public details on this project. ---- Public Summary from Project ---- This project aims to improve ship-based sea-ice thickness measurements made using an electromagnetic induction device by performing a theoretical analysis of the sensitivity of the electromagnetic instrument to factors such as instrument height and orientation, ice conductivity and thickness, and seawater conductivity. The results of the theoretical study will be used to assist the interpretation of an existing sea-ice thickness data set from the Mertz Glacier polynya cruise (V1, 1999/2000). The data set consists of the results of numerical modelling of the response of the EM31 electromagnetic instrument to typical one- and three-dimensional sea ice structures. One-dimensional model calculations were performed using software written specifically for the project. Three-dimensional model calculations were performed using Marco_air version 2.3, written by Z. Xiong and A. Raiche, CSIRO Mathematical Geophysics Group. Technical descriptions of this program are given in the preceding References section. The download file below contains some numerical output from the models, as well as a detailed description of the models used.

  • Spectra: one binary file per spectrum. Spectra can be processed using DOASIS or QDOAS software. Spectrum files are saved in folders numbered by date. Daily log files: for spectra (extra geometric information as well as latitude, longitude, solar zenith angle) and temperature (instrument, internal and external temperature measurements). Accelerometer: One ascii file per day with pitch, roll and yaw euler angles as the columns Images: taken by a small camera, co-directional with the MAX-DOAS, for context of broad light conditions (i.e. checking sunny/cloudy weather) Calibration files: Binary and text files for dark current, offset, slit function shape and wavelength calibrations

  • This data record has been compiled for a statistical methods study, conducted by Abigael Proctor as part of her PhD research in 2018. The data in this record have been used to showcase a new statistical method for determining no effect concentration (NEC). The study uses the data in this record to compare NEC and LCx estimates for copper in four Antarctic marine invertebrate species. The data associated with this record are a subset of four existing larger datasets: 1. amphipod: AAS_2933_Orchomenella_pinguides_Sensitivity_metals_Davis_2010-11 2. copepod: AAS_4100_Toxicity_Copepods 3. gastropod: AAS_2933_MetaToxicityMarine_JuvenileGastropods_Kingston2007 4. ostracod: AAS_2933_MetalToxicityMarine_BrownOstracods_Kingston2007 Subset details are described in the excel file provided.

  • Tracking spring and summer migration of humpbacks from Eden NSW, Australia to Antarctica. Dataset can be found here: https://data.aad.gov.au/aadc/argos/display_campaign.cfm?campaign_id=70 Satellite tags were deployed on adult humpback whales with a modified version of the Air Rocket Transmitter System (ARTS, Restech) and a purpose-designed projectile carrier at a pressure of 7.5 – 10 bar. A custom-designed, 80mm anchor section is attached to a stainless steel cylindrical housing containing a location-only transmitter (SPOT-5 by Wildlife Computers, Redmond, Washington, USA and Kiwisat 202 Cricket by Sirtrack, Havelock North, New Zealand). This superseded anchor design resulted in the anchor section disarticulating upon deployment in order to achieve improved tag retention times while minimising impact. The tags were sterilised with ethylene oxide prior to deployment and implanted up to 290mm into the skin, blubber, interfacial layers and outer muscle mass of the whale. Tags were programmed to transmit to the Argos satellite system at various duty cycles and repetition rates for a maximum of 720 transmissions per day. These transmissions are relayed to processing centres which calculate the transmitter’s location by measuring the Doppler Effect on transmission frequency.

  • Satellite tracks of humpback whales tagged off the Sunshine Coast, Queensland, Australia and tracked to Antarctic feeding grounds. Data can be found here: https://data.aad.gov.au/aadc/argos/display_campaign.cfm?campaign_id=87 Satellite tags were deployed on adult humpback whales with a modified version of the Air Rocket Transmitter System (ARTS, Restech) and a purpose-designed projectile carrier at a pressure of 7.5 – 10 bar. A custom-designed, 80mm anchor section is attached to a stainless steel cylindrical housing containing a location-only transmitter (SPOT-5 by Wildlife Computers, Redmond, Washington, USA and Kiwisat 202 Cricket by Sirtrack, Havelock North, New Zealand). This superseded anchor design resulted in the anchor section disarticulating upon deployment in order to achieve improved tag retention times while minimising impact. The tags were sterilised with ethylene oxide prior to deployment and implanted up to 290mm into the skin, blubber, interfacial layers and outer muscle mass of the whale. Tags were programmed to transmit to the Argos satellite system at various duty cycles and repetition rates for a maximum of 720 transmissions per day. These transmissions are relayed to processing centres which calculate the transmitter’s location by measuring the Doppler Effect on transmission frequency.