Keyword

CAMERAS

82 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 82
  • This dataset consists of two shapefiles created by Darren Southwell of the Australian Antarctic Division (AAD) by digitising the boundaries of adelie penguin colonies at the Rauer Group and the Vestfold Hills. The digitising was done from images resulting from the scanning and georeferencing of aerial photographs taken on 24 November 1993. The aerial photographs were taken for the AAD with a Linhof camera. Records of the photographs are included in the Australian Antarctic Data Centre's Aerial Photograph Catalogue.

  • Satellite image map of Amanda Bay, Antarctica. This map was produced for the Australian Antarctic Division by AUSLIG (now Geoscience Australia) Commercial, in Australia, in 1991. The map is at a scale of 1:100 000, and was produced from Landsat 4 TM imagery (124-108, 124-109). It is projected on a Transverse Mercator projection, and shows traverses/routes/foot track charts, glaciers/ice shelves, penguin colonies, stations/bases, runways/helipads, and gives some historical text information. The map has both geographical and UTM co-ordinates.

  • Four camera tow transects were completed on the upper slope during survey IN2017_V01 using the Marine National Facility’s Deep Tow Camera. This system collected oblique facing still images with a Canon – 1DX camera and high definition video with a Canon – C300 system. Four SeaLite Sphere lights provided illumination and two parallel laser beams 10 cm apart provided a reference scale for the images. This dataset presents results from the analysis of the still imagery. All camera tows were run at a ship speed over the ground of approximately 2 knots. Several sensors were attached to the towed body, including a SBE 37 CTD for collection of salinity, temperature and pressure data, a Kongsberg Mesotech altimeter and a Sonardynne beacon to record the location of the towed body. Transects were run downslope from the continental shelf break, with images analysed over a depth range of ~495 m to 670-725 m. Biota and substrates were characterised for every fifth image according to the CATAMI image classification scheme (Collaborative and Automated Tools for Analysis of Marine Imagery, Althaus et al., 2015). Images were loaded into the online platform SQUIDLE+ for analysis. Biota were counted as presence/absence of all visible biota for each image. Percent biological cover and substrate type for the whole image was calculated based on analysis of 30 random points across each image. Percent cover calculations were standardised according to the proportion of scored points on each image, excluding those that were too dark to classify. A total of 203 images were analysed. Images are available from: http://dap.nci.org.au/thredds/remoteCatalogService?catalog=http://dapds00.nci.org.au/thredds/catalog/fk1/IN2017_V01_Sabrina_Seafloor/catalog.xml

  • The dataset submitted here is 'Sea-ice freeboard derived from airborne laser scanner'. Between 2007 and 2012, the Australian Antarctic program operated a scanning LiDAR system and other scientific instruments for sea-ice geophysical surveys in East Antarctica. For example see Lieser et al. [2013] for the 2012 survey. The dataset here provides the sea-ice freeboard (i.e. elevation above sea level) along various helicopter flight lines of the 2012 survey in the sea-ice zone between 113 degE and 123 degE. The data collection was based on: - Riegl LMS Q240i-60 scanning LiDAR, measuring sea ice elevation above the WGS84 reference ellipsoid; - Hasselblad H3D II 50 camera, taking aerial photographs at about 13 cm resolution every 3-5 seconds (older digital camera used in 2007); - inertial navigation and global positioning system, OxTS RT-4003. The following geophysical corrections were applied to the sea-ice elevations to derive the sea-ice freeboard: - geoid correction (from the EGM2008 Earth gravity model); - mean ocean dynamic topography correction (from the DTU Space model - DTU10MDT); - ocean tide correction (from the Earth and Space Research CATS2008 Antarctic tide model); - atmospheric pressure (inverse barometer effect) correction from ECMWF data (4-year average) and ship-board underway observations. The geophysical corrections have been validated along selected flight lines by extracting ocean surface elevations from leads between ice floes as identified in the aerial photography. Contained in this dataset are the following files: - a netCDF file for 8 selected flights of the 2012 survey containing sea-ice freeboard values; - a postscript file for 4 of the 8 selected flights showing the residuals from the applied geophysical corrections. These 4 flights were selected on the basis of having a good spread of observable leads along the entire flight line that enabled the extraction of ocean surface elevations.

  • Satellite image map of Stefansson Bay, Kemp Land and Mac. Robertson Land, Antarctica. This map was produced for the Australian Antarctic Division by AUSLIG (now Geoscience Australia) Commercial, in Australia, in 1992. The map is at a scale of 1:100000, and was produced from Landsat TM scenes (WRS 139-107, 137-107). It is projected on a Transverse Mercator projection, and shows glaciers/ice shelves, penguin colonies, refuge/depots, and gives some historical text information. The map has both geographical and UTM co-ordinates.

  • Annual aerial surveys of southern right whales have been conducted off the southern Australian coast, between Cape Leeuwin (W.A.) and Ceduna (S.A.) over a 28 year period between 1993 and 2020, to monitor the recovery of this species following commercial whaling. We conducted an aerial survey of southern right whales between the 20th and 24th August 2020, to continue these annual series of surveys and inform the long-term population trend. The comparable count for the 2020 survey utilised the maximum count for each leg and incorporated a correction for the unsurveyed area between Head of the Bight to Ceduna due to the inability to cover whole survey as a result of COVID-19 restrictions between State borders. This resulted in 384 individuals, consisting of 156 cows accompanied by calves of the year and 72 unaccompanied adults. Of these, 126 images of individual whales have been selected for photo-identification matching. This is a significant decrease in overall sightings that has not been observed for over 13 years when compared to long term trend data for the population; last seen in 2007 (N = 286 individuals). The subsequent population estimate for the Australian ‘western’ subpopulation is 2,585 whales, which is also a significant decrease in estimated population size from 3,164 in 2019 to 2,585 in 2020. The extremely low number of unaccompanied adults (N = 68) had the greatest impact on the overall number of sightings in 2020, and is the lowest number sighted since 1993 (N = 47). Previous surveys in 2007 and 2015 have been noted as years of low whale counts that had been deemed anomalous years, although the low numbers from this survey questions this and may suggest the 3-year female breeding cycle is becoming more unpredictable. Considerable inter-annual variation in whale numbers, and cycles in population growth, makes it difficult to detect consistent and reliable changes in abundance from one year to the next, or even over longer periods of time. This severely inhibits our ability to identify immediate threats to the population and strongly supports continued annual population surveys.

  • An occupancy survey in December 2009-February 2010 and January 2011 found a total of 6 islands along the Knox coast had populations of breeding Adelie penguins. The survey in 2009/10 was conducted from a fixed wing aircraft and oblique aerial photographs were taken of occupied sites. The aerial photographs were geo-referenced to satellite images or the coastline shapefile from the Landsat Image Mosaic of Antarctica (LIMA, tile E157) and the boundaries of penguin colonies were digitised from the geo-referenced photos. Details for each island are: Merrit: Photographs taken on 1 February 2010 and geo-referenced to LIMA tile E157 Cape Nutt: Photographs taken on 5 January 2010 and geo-referenced to a Quickbird satellite image taken on 17 February 2011 Ivanoff Head: Photographs taken on 27 December 2009 and geo-referenced to LIMA tile E157 Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • An occupancy survey in December 2009-February 2010 and January 2011 found a total of 6 islands along the Knox coast had populations of breeding Adelie penguins. The survey in 2009/10 was conducted from a fixed wing aircraft and oblique aerial photographs were taken of occupied sites. The aerial photographs were geo-referenced to satellite images or the coastline shapefile from the Landsat Image Mosaic of Antarctica (LIMA, tile E157) and the boundaries of penguin colonies were digitised from the geo-referenced photos. Details for each island are: Merrit: Photographs taken on 1 February 2010 and geo-referenced to LIMA tile E157 Cape Nutt: Photographs taken on 5 January 2010 and geo-referenced to a Quickbird satellite image taken on 17 February 2011 Ivanoff Head: Photographs taken on 27 December 2009 and geo-referenced to LIMA tile E157 Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • Oblique hand-held photographs were taken of all Adelie penguin breeding colonies at Murray Monolith from a fixed wing aircraft on 10 December 2010. These photographs were geo-referenced to a Worldview 2 satellite image of both monoliths taken on 26 January 2011 and the colony boundaries in the geo-referenced photos were digitised as shapefiles. Some sections of the digitised Murray Monolith colonies near the crescent shaped moraine were moved so they were contained within the shapefile ‘rock_exposed_for_modelling_Scullin_Murray’). Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • Occupancy surveys in November 2009 and December 2010 (Southwell and Emmerson 2013) found a total of 15 Adelie penguin breeding sites in the Svenner Islands between longitudes 76.50oE to 77.50oE. The boundaries of breeding sub-colonies were subsequently mapped from vertical aerial photographs taken for abundance surveys on 20 November 2010 (for details of aerial photography see Southwell et al. 2013). The boundaries were mapped with a buffer distance of approximately 1-3 m from the perimeter of penguin sub-colonies. When photos of Island 73036 were viewed there was no colony to map so only 14 islands were mapped. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.