Keyword

CAMERAS

82 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 82
  • Satellite image map of Amanda Bay, Antarctica. This map was produced for the Australian Antarctic Division by AUSLIG (now Geoscience Australia) Commercial, in Australia, in 1991. The map is at a scale of 1:100 000, and was produced from Landsat 4 TM imagery (124-108, 124-109). It is projected on a Transverse Mercator projection, and shows traverses/routes/foot track charts, glaciers/ice shelves, penguin colonies, stations/bases, runways/helipads, and gives some historical text information. The map has both geographical and UTM co-ordinates.

  • Four camera tow transects were completed on the upper slope during survey IN2017_V01 using the Marine National Facility’s Deep Tow Camera. This system collected oblique facing still images with a Canon – 1DX camera and high definition video with a Canon – C300 system. Four SeaLite Sphere lights provided illumination and two parallel laser beams 10 cm apart provided a reference scale for the images. This dataset presents results from the analysis of the still imagery. All camera tows were run at a ship speed over the ground of approximately 2 knots. Several sensors were attached to the towed body, including a SBE 37 CTD for collection of salinity, temperature and pressure data, a Kongsberg Mesotech altimeter and a Sonardynne beacon to record the location of the towed body. Transects were run downslope from the continental shelf break, with images analysed over a depth range of ~495 m to 670-725 m. Biota and substrates were characterised for every fifth image according to the CATAMI image classification scheme (Collaborative and Automated Tools for Analysis of Marine Imagery, Althaus et al., 2015). Images were loaded into the online platform SQUIDLE+ for analysis. Biota were counted as presence/absence of all visible biota for each image. Percent biological cover and substrate type for the whole image was calculated based on analysis of 30 random points across each image. Percent cover calculations were standardised according to the proportion of scored points on each image, excluding those that were too dark to classify. A total of 203 images were analysed. Images are available from: http://dap.nci.org.au/thredds/remoteCatalogService?catalog=http://dapds00.nci.org.au/thredds/catalog/fk1/IN2017_V01_Sabrina_Seafloor/catalog.xml

  • The dataset submitted here is 'Sea-ice freeboard derived from airborne laser scanner'. Between 2007 and 2012, the Australian Antarctic program operated a scanning LiDAR system and other scientific instruments for sea-ice geophysical surveys in East Antarctica. For example see Lieser et al. [2013] for the 2012 survey. The dataset here provides the sea-ice freeboard (i.e. elevation above sea level) along various helicopter flight lines of the 2012 survey in the sea-ice zone between 113 degE and 123 degE. The data collection was based on: - Riegl LMS Q240i-60 scanning LiDAR, measuring sea ice elevation above the WGS84 reference ellipsoid; - Hasselblad H3D II 50 camera, taking aerial photographs at about 13 cm resolution every 3-5 seconds (older digital camera used in 2007); - inertial navigation and global positioning system, OxTS RT-4003. The following geophysical corrections were applied to the sea-ice elevations to derive the sea-ice freeboard: - geoid correction (from the EGM2008 Earth gravity model); - mean ocean dynamic topography correction (from the DTU Space model - DTU10MDT); - ocean tide correction (from the Earth and Space Research CATS2008 Antarctic tide model); - atmospheric pressure (inverse barometer effect) correction from ECMWF data (4-year average) and ship-board underway observations. The geophysical corrections have been validated along selected flight lines by extracting ocean surface elevations from leads between ice floes as identified in the aerial photography. Contained in this dataset are the following files: - a netCDF file for 8 selected flights of the 2012 survey containing sea-ice freeboard values; - a postscript file for 4 of the 8 selected flights showing the residuals from the applied geophysical corrections. These 4 flights were selected on the basis of having a good spread of observable leads along the entire flight line that enabled the extraction of ocean surface elevations.

  • This dataset consists of two shapefiles created by Darren Southwell of the Australian Antarctic Division (AAD) by digitising the boundaries of adelie penguin colonies at the Rauer Group and the Vestfold Hills. The digitising was done from images resulting from the scanning and georeferencing of aerial photographs taken on 24 November 1993. The aerial photographs were taken for the AAD with a Linhof camera. Records of the photographs are included in the Australian Antarctic Data Centre's Aerial Photograph Catalogue.

  • Satellite image map of Stefansson Bay, Kemp Land and Mac. Robertson Land, Antarctica. This map was produced for the Australian Antarctic Division by AUSLIG (now Geoscience Australia) Commercial, in Australia, in 1992. The map is at a scale of 1:100000, and was produced from Landsat TM scenes (WRS 139-107, 137-107). It is projected on a Transverse Mercator projection, and shows glaciers/ice shelves, penguin colonies, refuge/depots, and gives some historical text information. The map has both geographical and UTM co-ordinates.

  • The dataset comprises Adelie penguin colony boundaries derived from oblique aerial photographs taken towards the end of the 2014/15 summer between Mawson and Taylor Glacier. The aerial photographs were geo-referenced to AAT coastline polygon data and the boundaries of Adelie penguin colonies were digitised. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • These data have been superseded by a more recent dataset, described here - https://data.aad.gov.au/metadata/records/AAS_4088_Oblique_Aerial_Photos This dataset comprises oblique aerial photographs of multiple Adelie penguin breeding sites in East Antarctica. The photographs were taken using hand-held digital cameras from fixed-wing aircraft and helicopters used by the Australian Antarctic Program. The aircraft flew at or above the minimum wildlife approach altitude of 750 m with a horizontal offset distance from the site of approximately 500-600m. The date and exact location of the aircraft when each photo was taken is embedded in the EXIF data of each photo. All photographs that were taken are included despite varying image quality due to environmental conditions, camera type and altitude. Generally an attempt was made to photograph the entire breeding site (usually an island, occasionally an outcrop of continental rock) with a series of zoomed, overlapping photos. Sometimes this was not possible when the site was large, and in these cases the overlapping photos covered the locations where colonies were known to exist from previous survey work. In some cases a site was over-flown at an altitude of 1200m so that a single photo of the entire site could be taken. These photos are useful in piecing together the detailed photos. The database of potential Adelie penguin breeding habitat in Southwell et al. (2016a) was used to associate photos to a particular breeding site and structure how the photos are stored. The breeding site database has a unique identifying code of every site of potential breeding habitat in East Antarctica, and the sites are aggregated into sub-groups and then groups. The file structure in which the photos are stored has a combination of 'group' and 'split-year breeding season' at the top level (eg VES 2015-16 contains all photos in group VES (Vestfold Hills and islands) taken in the 2015-16 breeding season). Within each group-year folder are sub-folders for each breeding site where photos were taken (eg IS_72276 is Gardner Island in the VES group). If an overview photo was taken there are separate sub-folders for overview and detailed photos in the site sub-folder. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • Aerial photography (Linhof) of penguin colonies was acquired over the Windmill Islands (Eric Woehler). The penguin colonies were traced, then digitised (John Cox), and saved as DXF-files. Using the ArcView extension 'Register and Transform' (Tom Velthuis), The DXF-files were brought into a GIS and transformed to the appropriate islands. Data conforms to SCAR Feature Catalogue which can be searched (refer to link below).

  • Percent-cover estimates from forward facing still-images collected during the benthic trawls of the 2007/08 CEAMARC voyage (raw data-set here: https://data.aad.gov.au/metadata/records/CEAMARC_CASO_200708_V3_IMAGES). All fauna in the bottom third of each image was scored to the lowest taxonomic resolution possible. The images originate from 32 transects, but were split by their lon-lat-position within a spatial grid of environmental variables into 41 sites. This dataset contains: (1) - species/ morphotypes identified to the highest taxonomic resolution possible - broader taxonomic classification (phylum/class) - each species mobility, feeding-type and body-shape if possible - average abundances in percent-cover at each site (2) - the mean longitude of all images aggregated per site - the mean latitude of all images aggregated per site - the number of images scored per site

  • Annual aerial surveys of southern right whales have been conducted off the southern Australian coast, between Cape Leeuwin (W.A.) and Ceduna (S.A.) over a 28 year period between 1993 and 2020, to monitor the recovery of this species following commercial whaling. We conducted an aerial survey of southern right whales between the 20th and 24th August 2020, to continue these annual series of surveys and inform the long-term population trend. The comparable count for the 2020 survey utilised the maximum count for each leg and incorporated a correction for the unsurveyed area between Head of the Bight to Ceduna due to the inability to cover whole survey as a result of COVID-19 restrictions between State borders. This resulted in 384 individuals, consisting of 156 cows accompanied by calves of the year and 72 unaccompanied adults. Of these, 126 images of individual whales have been selected for photo-identification matching. This is a significant decrease in overall sightings that has not been observed for over 13 years when compared to long term trend data for the population; last seen in 2007 (N = 286 individuals). The subsequent population estimate for the Australian ‘western’ subpopulation is 2,585 whales, which is also a significant decrease in estimated population size from 3,164 in 2019 to 2,585 in 2020. The extremely low number of unaccompanied adults (N = 68) had the greatest impact on the overall number of sightings in 2020, and is the lowest number sighted since 1993 (N = 47). Previous surveys in 2007 and 2015 have been noted as years of low whale counts that had been deemed anomalous years, although the low numbers from this survey questions this and may suggest the 3-year female breeding cycle is becoming more unpredictable. Considerable inter-annual variation in whale numbers, and cycles in population growth, makes it difficult to detect consistent and reliable changes in abundance from one year to the next, or even over longer periods of time. This severely inhibits our ability to identify immediate threats to the population and strongly supports continued annual population surveys.