VISUAL OBSERVATIONS
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
The dataset contains boundaries of nest areas of surface nesting flying seabirds at numerous breeding sites across Prydz Bay, Antarctica. The sites are at islands in the Rauer Group, the Svenner Islands and two islands (Bluff Island and Gardner Island) off the Vestfold Hills. The boundary data were obtained from aerial photos of slopes where flying seabirds had been previously observed. The aerial photos were taken on 1 December 2017. Marcus Salton and Kim Kliska conducted the aerial photography and delineated the GIS boundaries representing the nesting areas. The database of potential Adelie penguin breeding habitat as described by the metadata record 'Sites of potential habitat for breeding Adelie penguins in East Antarctica' (http://data.aad.gov.au/metadata/records/AAS_4088_Adelie_Potential_Habitats) was used to associate flying seabird nest areas to a particular island and to structure how the boundaries are stored. The Adelie penguin breeding site database has a unique identifying code for every island in East Antarctica, and the islands are aggregated into spatial sub-groups and then spatial groups. The file structure in which the boundaries are stored has a combination of ‘island’, ‘sub-group’ and ‘spatial group’ (or region) at the top level (eg VES_SG_10 contains all boundaries in spatial group VES (Vestfold Hills and islands) and sub-group 10). Within each sub-group folder are folders for each island where photos were taken (eg IS_72276 is Gardner Island in the VES_SG_10 group). The data is comprised of: (i) a polygon shapefile for each island on which flying bird nest areas were observed; and (ii) a single polygon shapefile for each of Rauer Group, Svenner Islands and Vestfold Hills in which the polygons in (i) are combined. The polygons in the shapefiles have a Type attribute with values ranging from A to E. A = Nests present B = Searched and no nests present C = Nests or salt stains (the investigators were unable to decide whether what they were seeing was nests or salt stains) D = Snow cover E = Not searched
-
The dataset contains boundaries of Cape petrel nesting areas at numerous breeding sites on islands off the Vestfold Hills, Antarctica. Boundaries of nesting sites were obtained from aligning ground observations and photographs from land or the sea-ice adjacent to the breeding sites onto maps of islands in the region. The observations were made and the photographs taken between 18 and 30 November 2017. Marcus Salton and Kim Kliska made the ground observations, took the photographs and delineated the GIS boundaries representing the nesting areas. The data is a polygon shapefile with each polygon designated Type A or Type B. Type A indicates nests present. Type B indicates this area was searched and no nests were present. Also included are three images showing the Type A polygons and the associated nest counts. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.
-
This dataset contains sporadic shore based observations of killer whales (Orcinus orca) from Macquarie Island from 1989 to 1998 (inclusive). The following data are included in the dataset: Date and time of observation (Australian Eastern Standard Time) The name of the observer The location of the observation (the beach or bay from which the observation was made). The latitude and longitude of the sighted animal (WGS84). The sex of the animal (M=Male, F=Female) (where available). Lifestage of the animal (where available). The observed individual count. Extra notes relating to the observation.
-
A collection of at sea observations made of icebergs, seabirds and whales on the BROKE voyage of the Aurora Australis during the 1995-1996 summer season. The data are mostly text or csv files and document observations of icebergs, seabirds and whales, giving times and/or locations. Further supporting information may be included in the data download, or in other metadata records relating to the BROKE voyage (as opposed to the later BROKE-West voyage).
-
Metadata record for data from ASAC Project 2500 See the link below for public details on this project. Public Weekly fast-ice and snow thicknesses from an ongoing long-term time-series together with meteorological data will be used to analyse ice-atmosphere interactions. Interannual changes will be related to climate effects. Various sites at each location will be sampled to resolve the influence of oceanic forcing on the fast-ice growth. Project objectives: Landfast sea ice (fast ice) forms on the near-coastal ocean off each of the three Australian Antarctic stations each autumn. At Mawson and Davis stations this ice cover is generally stable, increasing in thickness throughout the winter to reach its maximum thickness in October or November before decaying and eventually breaking out in late spring or summer [Heil and Allison, 2002a]. At Casey, the third Australian station, the fast-ice cover is very unstable and not suitable for the study proposed here. The fast ice at the proposed measuring sites is stationary all through the austral winter. There is no contribution due to mechanical processes (rafting or ridging) on the thickness evolution of the fast ice at the measuring sites [Heil, 2001]. Its growth and decay, and the annual maximum thickness depend primarily on thermodynamic processes [Heil et al., 1996], which are forced by energy and moisture exchanges at the atmosphere-ice interface, the thickness of the snow cover, and the thermal energy supplied to the underside of the ice from the ocean. Starting in the mid 1950s measurements of the fast-ice thickness and snow cover are available for individual years at Mawson and Davis stations. After quality control the combined record for Mawson includes data from 27 seasons; the Davis record includes 20 seasons [Heil and Allison, 2002a]. However, significant gaps exist in these historic records. The scientific value of a continuous record of fast-ice thickness as a climatic indicator has been recognised and as a consequence the fast-ice and snow measurements at Davis and Mawson have been accepted into the State of the Environment (SOE) reporting scheme by the Australian Antarctic Division. Data from ANARE fast-ice measurements have been included in scientific research (e.g., Mellor [1960], Allison [1981], Heil et al. [1996], or Heil and Allison [2002a]). For example, Heil et al. [1996] designed an inverse 1-dimensional thermodynamic sea-ice model and used historic fast-ice data from Mawson together with meteorological observations to derive the seasonal and interannual variability of the oceanic heat flux at the underside of the fast ice. They showed that the interannual variability identified from the fast-ice data was in agreement with changes in the water-mass properties observed upstream of the fast-ice site. Using the historic data together with data from ongoing measurements this project aims to quantify the local-scale interactions between atmosphere and fast ice, to derive the relative impact of oceanic forcing on the fast-ice evolution, to estimate the small-scale spatial variability of the fast-ice growth, and to explore the connection between fast-ice changes and climate change. In particular we aim: - to extend previous analysis from records of fast-ice observations for Mawson and Davis stations; - to exactly determine the growth-melt cycle of East Antarctic fast ice and its modifications due to changing environmental conditions; - to derive the statistical variability of the fast-ice evolution relative to atmospheric and oceanic forcing; - to evaluate the suitability of fast ice as indicator of changes in the Antarctic environment; - to determine the spatial coherence of fast-ice properties. Contribution of this research to achieving the relevant milestones contained in the Strategic Plan: - Contributions to Key Scientific Output 3: This research aims to derive an assessment of the links between fast-ice variability and Southern Hemisphere environmental conditions from in-situ observations. The annual maximum ice thickness, and the date at which this maximum thickness is reached, reflect the integrated conditions of the local atmospheric and oceanic parameters [Heil, in prep.]. The fast-ice measurements together with concurrent meteorological (and oceanic) observations will allow us to study the direct links of variability in the sea-ice thermodynamics to changes in the Southern Hemisphere atmospheric conditions ("weather" in KSO 3.1). This knowledge will aid our understanding of the interannual and long-term variability of the drifting sea ice, as it will allow us to separate thermodynamic effects from dynamic effects [Heil et al., 1998]. Research outcomes from this study will aid the parameterisation of thermodynamic sea-ice processes in coupled climate models, and will provide an outlook towards statistical parameterisation of fast-ice characteristics within numerical models. - Contributions to Key Scientific Output 4: Using historic data and ongoing measurements this project seeks to build an accurate and ongoing record of measurements of fast-ice and snow properties for the monitoring and detection of change in Antarctic and Southern Ocean climate. Changes identified in the fast-ice thickness or in the occurrence of the annual maximum ice thickness are due to changes in either oceanic or atmospheric heat and/or moisture transfer. Using fast-ice measurements from locations around the Antarctic continent in combination with large-scale atmospheric (and oceanic) data the external impact on the sea ice can be extrapolated. Historic climatologies of interannual variability will be updated and extended. These climatologies will be available to expedition operations, scientific research, etc. Assessment basis: * Completion of field work/primary scientific activity: The requirements of data collection for this project are in line with indicator No. 43 "Fast ice thickness at Davis and Mawson" of the State of the Environment (SOE) reporting scheme. Weekly measurements of fast-ice and snow thicknesses are required for the SOE scheme as well as for this project. Additional data on the freeboard of the ice are easily and quickly obtained during the standard measurements [Heil and Allison, 2002b]. It is worthwhile to emphasise the requirement of a long-term commitment for the field measurements in order to obtain meaningful and statistically significant records of fast-ice observations. * Completion of analysis: The evaluation of individual growth-decay seasons will be undertaken once all fast-ice data as well as all required auxiliary data (mainly meteorological measurements) are available to the CI. Where available, opportunistic oceanographic data will be acquired as part of related research projects. Analysis to assess the interaction between fast ice, atmosphere and ocean will be carried out for each growth-decay season. This will include numerical modelling of the thermodynamic processes in fast-ice growth and decay. For years, when measurements of all external forcing fields (oceanic and atmospheric) have been collected, the parameterisations of the thermodynamic model can be evaluated by comparing the model results with the observed fast-ice thickness and growth rates. Following Heil et al. [1996] the thermodynamic model can be reconfigured for use in the inverse mode, using atmospheric and fast-ice data to calculate the oceanic heat flux at the underside of the ice. Long-term records of changes in the oceanic heat flux are not available and this inverse method (driven with data derived from meteorological and fast-ice measurements) will be able to contribute to our understanding of coastal oceanography by using several measuring sites within a small area. Analysis of the interannual variability of the fast ice and its response to changing environmental conditions will be carried out on the long-term data record. The data will be analysed for long-term signals, and will be evaluated for their statistical significance. * Publication of results: Scientific findings will be written up and submitted for publication as they arise. Publications in high-impact international journals are expected about every 2 years.
-
Observations of Royal Penguins at North Head, Macquarie Island were made to 2 purposes. First, general observations of the whole rookery, with counting birds, noting times of laying, hatching, changing of guard over the nests and habits of the penguins. Second, the detailed observation of marked nests for the determination of hatching periods, size of clutches and variations in the dimensions of the eggs. Census data from field report by Z Soucek (now deceased), lodged in the AAD archives.
-
Seal colonies on Macquarie Island. This is a polygon dataset stored in the Geographical Information System (GIS). Attributes include the species name and whether breeding occurs within the area represented. The species include Southern Elephant and Fur.
-
Flying bird breeding colonies on Macquarie Island. This is a polygon dataset stored in the Geographical Information System (GIS). Attributes include the species name and the time of the year during which breeding occurs. The species include Black-browed Albatross, Grey-headed albatross, Southern Giant-Petrel and Wandering Albatross.
-
INDICATOR DEFINITION Count of all adult females, fully weaned pups and dead pups hauled out on, or close to, the day of maximum cow numbers, set for October 15. TYPE OF INDICATOR There are three types of indicators used in this report: 1.Describes the CONDITION of important elements of a system; 2.Show the extent of the major PRESSURES exerted on a system; 3.Determine RESPONSES to either condition or changes in the condition of a system. This indicator is one of: CONDITION RATIONALE FOR INDICATOR SELECTION Elephant seals from Macquarie Island are long distance foragers who can utilise the Southern Ocean both west as far as Heard Island and east as far as the Ross Sea. Thus their populations reflect foraging conditions across a vast area. The slow decline in their numbers (-2.3% annually from 1988-1993) suggests that their ocean foraging has been more difficult in recent decades. Furthermore, interactions with humans are negligible due to the absence of significant overlap in their diet with commercial fisheries. This suggests that changes in 'natural' ocean conditions may have altered aspects of prey availability. It is clear that seal numbers are changing in response to ocean conditions but at the moment these conditions cannot be specified. DESIGN AND STRATEGY FOR INDICATOR MONITORING PROGRAM Spatial Scale: Five beaches on Macquarie Island (lat54 degrees 37' 59.9' S, long 158 degrees 52' 59.9' E): North Head to Aurora Point; Aurora Point to Caroline Cove; Garden Cove to Sandy Bay; Sandy Bay to Waterfall Bay; Waterfall Bay to Hurd Point. Frequency: Annual census on 15th October Measurement Technique: Monitoring the Southern Elephant Seal population on Macquarie island requires a one day whole island adult female census on October 15 and a daily count of cow numbers, fully weaned pups and dead pups on the west and east isthmus beaches throughout October. Daily cow counts during October, along the isthmus beaches close to the Station, provide data to identify exactly the day of maximum numbers. The isthmus counts are recorded under the long-established (since 1950) harem names. Daily counts allow adjustment to the census totals if the day of maximum numbers of cows ashore happens to fall on either side of October 15. Personnel need to be dispersed around the island by October 15 so that all beaches are counted for seals on that day. This has been achieved successfully for the last 15 years. On the day of maximum haul out (around 15th October) the only Elephant seals present are cows, their young pups and adult males. The three classes can be readily distinguished and counted accurately. Lactating pups are not counted, their numbers are provided by the cow count on a 1:1 proportion. The combined count of cows, fully weaned pups and dead pups provides an index of pup production. The count of any group is made until there is agreement between counts to better than +/- 5%. Thus there is always a double count as a minimum; the number of counts can reach double figures when a large group is enumerated. The largest single group on Macquarie Island is that at West Razorback with greater than 1,000 cows; Multiple counts are always required there. RESEARCH ISSUES Much research has been done already to acquire demographic data so that population models can be produced. Thus there will be predicted population sizes for elephant seals on Macquarie Island in 2002 onwards and the annual censuses will allow these predictions to be tested against the actual numbers. The censuses are also a check on the population status of this endangered species. LINKS TO OTHER INDICATORS
-
This work was carried out by Graeme Smith between 1966 and 1970 as part of a PhD at the Australian National University. The dataset contains information about penguins killed in 1967 as part of the work. Also available for download is a copy of the thesis. Taken from the introduction of the thesis: Penguins are widely distributed in the Southern Hemisphere. The distribution is circumpolar in the Antarctic and sub-Antarctic regions, and ranges north to the southern coasts of Africa, Australasia and South America, where the range extends northwards up the western coast, and across to the Galapagos Islands. The Galapagos penguin is the most northern species, while the Emperor and the Adelie penguins are confined to the Antarctic. Although most species of penguins are found in the warmer zones of the Southern Hemisphere, and in many cases close to inhabited coasts, comparatively little is known about their biology. By contrast, the biology of the penguins of the remote sub-Antarctic islands and the Antarctic continent is well documented for a number of species. This anomalous situation is probably a result of the great interest shown in the Antarctic regions following Cook's voyages (1768-71 and 1772-75), and the comparatively limited number of species found in these regions. Also see the metadata record for work on Royal Penguins carried out at Macquarie Island between 1955 and 1969 - ID "RoyalPenguin1955-1969".