SIPEX
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
We checked each site by taking ice cores and observing the algae biomass to determine the likelihood of krill living under the sea ice in each location. We also used a Remotely Operated Vehicle (ROV) with cameras attached to observe the abundance of krill under the sea ice. If krill were present we used on the sea ice floe a zooplankton pump, called MASMA, according to Meyer et al. 2009, whereas at the edge of the floe column a custom-built fish pump system was used to collect krill near the surface. The Aqualife Biostream BP40 fish pump was capable of pumping up to 1300 litres per minute without harming animals that pass through the pump. For much of the voyage it was operated from the ctd room and at this increased suction head it ran at about 500 litres per minute. Krill were caught at ice stations 2, 6, 7 and 8. The Krill Sample-Overview.xls file contains information regarding how many krill were caught at each ice stations, who was involved and related information. The SIPEX II Krill Voyage Report.docx contains information about the various issues that were encountered during the voyage. It also contains information from the Bottom Krill experiment, which has its own dataset and metadata record. It is duplicated in both datasets. The larvae were used for a growth experiment using the IGR method and after length measurements frozen for carbon, nitrogen, lipids, stomach and gut content analysis. The total and carapace length were determined of juveniles as well as their digestive gland size. Animals were than dissected and tissues frozen at -80C for further analysis (see above). These condition parameters will be discussed in relation to physical and biological environmental parameters of the ice floe (e.g. sea ice thickness, snow coverage, under ice topography and biomass). When this data is analysed, the dataset will be updated to include analysed versions of the data listed in the Krill Sample-Overview.xls file. Also included in the dataset are technical documents and manuals pertaining to the fish pump that was used. Meyer B et al. 2009. Limnol Oceanogr 54:1595-1614
-
This dataset contains data resulting from the measurement of brine samples extracted from the sea-ice during the 2012 SIPEX 2 (Sea Ice Physics and Ecosystems Experiment) marine science voyage. The Brine was collected from partially drilled holes in the ice using suction. In some of these cases the brine analysed came from holes which correspond to permeability measurements. In these cases a core number is associated with the brine data which will correspond to the core number in the permeability data set found in the master core list Excel file. The purpose of this data set was to act as a first step to quantify the effect that extra cellular carbon may have on the physical properties of brine and sea ice. At least 1 litre of brine was collected from each partial hole for analysis. The total sample was split for the following analyses. Viscosity of the brine was measured before and after filtering out any biological components that may have been in solution or otherwise in order to assess whether or not extracellular carbon has an effect on fluid flow in sea ice. What was not used for viscosity measurements was used for chlorophyll, extra-cellular carbon and bacterial analysis to gain a sense of the level and type of biology and biological compounds in the brine to then be compared to the measured physical properties. The biological analysis will be carried out at the university of Tasmania by Sarah Ugalde. On many of these samples the complex permittivity of the brine was also measured and the data can be found in the Relative_Permitivity_of_Brine folder with each sample corresponding in core number. For info on the permittivity measurements please see the metadata in that folder.
-
We deployed CTD sensors on five of the SIPEX 2 ice stations for collecting temperature and salinity of the water column under the sea ice. This dataset contains the raw data as outputted from the CTD in Excel format, in English. The dates that the CTD were deployed are in the file names (i.e. 20121023 is October 23, 2012).
-
We set out to achieve floe-scale 3-D mapping of sea ice draft and bio-optical parameters using a Multibeam SONAR and Hyperspectral radiometer mounted to an Autonomous Underwater Vehicle (AUV). The AUV utilised was the 'JAGUAR' Seabed-class vehicle from the Deep Submergence Laboratory at the WoodsHole Oceanographic Institution. The AUV comes with a CTD and ADCP. However these are not deployed as scientific sensors and therefore are unsupported in terms of metadata. In particular the CTD was not calibrated before or during the voyage. The AUV used a LongBaseLine system formed by three transponders to navigate to and from the survey grid. Two were located on the ice and the third was deployed from the back of the ship with an acoustic communications modem. Once at the survey grid beneath the sea ice, the AUV used the DVL to navigate using bottom-tracking of the underside of the sea ice. We conducted 4 missions beneath sea-ice during the SIPEX-II voyage. The current status of the data is that is in un-processed and unavailable until final processing is completed in 2013. Persons interested in the data should contact Dr Guy Williams directly for further information and preliminary figures relating to the AUV missions. The files currently in the archive are in raw form. Some preliminary data is provided for stations 2, 3, 4 and 6 as: floe-2-20120926.mat floe-3-20121003.mat floe-4-20121006.mat floe-6-20121013.mat These can be accessed using the Seabed_plot routines (MATLAB) in this folder. There is a readme file provided called what-is-this.txt Also included is the video footage taken from the AUV using a GoPro HD Hero. Video Codec: avc1 Resolution: 1920x1080 pixels Frame Rate: 29.970030 f/s Audio Codec: mp4a Audio Bitrate: 1536 kb/s Finally, plots of the data for ice stations 2,3,4 and 6 are included in the preliminary figures folder. The file names indicate which ice station the plots are from.
-
This dataset contains sea ice surface brightness temperatures using a portable passive-microwave radiometer operating at 36Ghz-H,V mounted to the undercarriage of a Squirrel helicopter during SIPEX 2, 2012. This radiometer is the same sensor as satellite passive-microwave radiometer AMSR-E and AMSR2. Our passive-microwave radiometer is launched on the same helicopter as Jan Lieser's (RAPPAL), so please see the "SIPEX-2 RAPPLS Surveys (Radar, Aerial Photography, Pyrometer, and Laser Scanning system)" metadata file for details of the aircraft. The RAPPLS dataset also contains track (GPS position) and altitude data, which can be used in conjunction with this dataset. The CSV files in this dataset are the raw files as output by the sensor. These raw data files show only the relevant parameters (time and brightness temperatures).
-
DC Electrical: In order to relate the fluid permeability to the electrical properties of sea ice, we also took measurements of the vertical component of the DC electrical conductivity tensor of sea ice. Cores extending to the bottom of an ice floe were taken and laid out holder. With the exception of sites 7 and 8 where we encountered a slush layer below the hard ice and could not core down to the ocean. The core bottom was determined at sites 7 and 8 to be the ice slush interface. Immediately upon extraction, holes that fit our thermistor probes were drilled every ten centimetres and a temperature profile was taken. Subsequently, slightly larger holes were drilled which fit our electrical probes (stainless steel nails). An AEMC Earth Resistivity Meter was then used to measure the resistance over 10 cm sections of the core (usually offset by 5 cm so that the measured temperature was in the centre of the section where electrical resistance was measured). The cores used in resistance measurements were taken very close to where the crystallographic cores were taken. In almost all cases the cores extracted for electrical measurements were also used for crystallographic analysis, so that there was an exact match of electrical properties with crystal structure. In such cases the DC electrical cores were then moved to a -20 degree C cold room for further processing immediately after measurements in the field. A thin vertical section, approximately 3mm thick, was taken from each of the cores stored for analysis. These sections were placed between a pair of cross polarized plates and photographed. Each photo was labelled with the core and date it was taken, and was photographed with a meter stick alongside for scale. After the thin sections were photographed, the remaining samples were melted to measure salinity. Some of the melted sea ice was saved for later O18 analysis to distinguish samples containing snow ice from those containing marine granular ice. The temperature and salinities we are then used to calculate brine volume fractions along the 10 cm sections of the core. The DC conductivity data collected can be found in the Electrical tab of the Master_Core_List.xls Excel file. The raw data can be found in the scans of our field note books located in the folder named notebooks. In the spread sheet the measured resistances of the 10 cm sections, temperatures, salinities and corresponding brine volume fractions are listed per core. For each core the supporting crystallography core number can be found in the crystallography column of the spread sheet. The photos of the crystallography cores can be found in the crystallography folder, separated into subfolders labelled with the site and core number, Each photo also contains a tag indicating the core number , site taken , date, and what depth range this covers. Tags may not contain a depth range for cores less than 1 meter. Please see the meter stick in each photo for scale.
-
Zooplankton were collected during the winter-spring transition during two cruises of the Aurora Australis: SIPEX in 2007 and SIPEX II in 2012. The umbrella net was 2 metres long, 28 cm2 mouth area and mesh size of 100 um. The net was lowered through holes drilled through the pack ice and lowered to 100 m. It was pulled slowly by hand to the surface, closed and brought back through the ice hole. The contents were preserved in 5% buffered formaldehyde and examined under a Leica M12 in the laboratory. Species were identified to the lowest taxon possible.
-
Water samples for dissolved trace metal measurements were collected from the surface (15m) down to the 1000m using an autonomous intelligent rosette system (General Ocanics, USA) specially adapted for trace metal work and deployed on a Dyneema rope. The rosette was equipped with 12x10-L Niskin-1010X bottles specially modified for trace metal water sampling. This system has been successfully deployed on the RSV Aurora Australis during voyages au0703 and au0806. Care was taken to avoid any contamination from the ship and the operating personnel. Water samplers were processed aboard under an ISO class 5 trace-metal-clean laminar flow bench in to a trace-metal-clean laboratory container on the ship's trawl deck. All transfer tubes, filtering devices and sample containers were rinsed liberally with sample before final collection. Samples were then drawn through C-Flex tubing (Cole Parmer) and filtered in-line through 0.2 micron pore-size acid-washed capsules (Pall Supor membrane, Acropak 200). Regular sampling depths were as follows: 1000m, 750m, 500m, 300m, 200m, 150m, 125m, 100m, 75m, 50m, 30m, 15m. Samples were analysed within a minute of filtration. Iron(II) was detected with the luminol method combining the experimental set-up of Hansard et al. (2009) with the chemistry as described by Croot and Laan (2002). Samples were not acidified prior to analysis and were pumped directly into the flow cell without an injection valve. Care was taken to maintain a stable light field during measurements as the luminol reagent was found to be extremely sensitive to changes in light intensity. Photons from the reaction of luminol with iron(II) were counted with a Hamamatsu photomultiplier tube housed in a light-tight box. The signal was recorded using FloZ software (GlobalFIA) and the data for each run is stored in a separate file. There is a folder for each profile that contains all the files (automatically generated by the software), which are numbered. The file numbers (e.g. sample1, sample2,...) correspond to the runs as noted in the lab book (see scans). P.L. Croot, P. Laan (2002). Analytica Chimica Acta 466: 261-273. S.P. Hansard et al. (2009). Deep-Sea Res. I 56: 1117-1129.
-
Zooplankton were collected during the winter-spring transition during two cruises of the Aurora Australis: SIPEX in 2007 and SIPEX II in 2012. As part of the collections sea ice cores were collected to describe the ice habitat during the period of zooplankton collections. Ice cores were taken with a 20 cm diameter SIPRE corer and sectioned in the field with an ice core. Temperature was measured in the section using a spike thermometer and slivers of each section were melted without filtered water to record salinity. The remainders of each section were melted at 4oC in filtered seawater and the melted water was used to measure chlorophyll a concentration, and meiofauna species and abundance. Meiofauna were counted and identified using a Leica M12 microscope: to species in most cases and down to stage during 2012.
-
Snowpit measurements made from ice stations during the SIPEX II voyage of the Aurora Australis, 2012
Note - these data should be used with caution. The chief investigator for the dataset has indicated that a better quality dataset exists, but the AADC have been unable to attain it for archive. In addition to snow pits dug by other groups, several snow pits were dug at IMB/AWS deployment sites and at snow mast sites. Dates, locations, personnel, and purpose are listed in Table 1. Many of the data files include the raw weight measurements including the mass of the snow density shovel along with the snow. This needs to be corrected using the snow density shovel weight appropriate to each pit. Table 1 Snow Pits (comma separated) Date,Location,Personnel,Comments 2012-10-04,Floe 3 radiometer site,Katie,Full-depth snow density profile for evaluation of SMP data 2012-10-08,Floe 4 drift mast,Katie,Full-depth snow density profile for evaluation of SMP data 2012-10-14,Floe 6 buoy 1,Katie,Full-depth snow density profile for evaluation of SAMS WHOI-3 data 2012-10-14,Floe 6 buoy 2,Katie,Full-depth snow density profile for evaluation of SAMS WHOI-5 data 2012-10-20,Floe 7 drift mast,Ted,Snow pit to characterise snow at ice station 7 drift mast site 2012-10-23,Floe 7 drift mast,Katie,Full-depth snow density profile for evaluation of SMP data 2012-10-28,Helicopter buoy install,Petra,Snow pit for evaluation of SAMS- WHOI-4 buoy data 2012-10-29,Helicopter buoy install,Petra,Snow pit for evaluation of SAMS- TASI2-1 buoy data 2012-11-01,Floe 8,Ted,Snow pit for evaluation of WHOI-2 buoy data 2012-11-04,Floe 6 buoy re-install,Ted,Snow pit for evaluation of WHOI-6 buoy data