Keyword

EARTH SCIENCE > CRYOSPHERE > SEA ICE

82 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 82
  • Three Trident Sensors Helix beacons (Unit 1,2,3) were deployed about on ice floes close to latitude 62.8 S and longitude 29.8 E on 4th July 2017 to measure sea ice drift. The region where the instruments were deployed (Antarctic Marginal Ice Zone) consisted of first-year ice on average ~50 cm thick. The instruments were deployed by hand by three people, lowered by crane from the ship to the ice on a basket cradle on floes ~5 m in diameter. The temporal resolution is 4 hours. The survival of the sensors depended on staying fixed to the floe and the battery life. Unit 1 provided GPS location from the 5th July 2017 to 1st December 2017, started at 62.84 S and 30.20 E and finished at 61.55 S and 55.99 E. Unit 2 provided GPS location from the 5th July 2017 to 3rd August 2017, started at 62.83 S and 30.20 E and finished at 62.36 S and 31.57 E. Unit 3 provided GPS location from the 5th July 2017 to 15st August December 2017, started at 62.59 S and 29.98 E and finished at 61.16 S and 35.60 E. In the .xlsx submission sheet 1 refers to Unit 1, sheet 2 to Unit 2, and sheet 3 to Unit 3. First column is the Unit Identifier (1,2,3) Second column is the date in the format day/month/year Third column is the UTC time in the format hh:mm:ss Fourth column is the latitude in degrees and decimals, the negative refers to South Fifth column is the longitude in degrees and decimals, the positive refers to East

  • Observations of the sea ice cover at Wilkes base in Autumn-Winter 1963. Includes water temperature, air temperature, wind speed and direction, cloud cover, relative humidity, and general notes. These documents have been archived at the Australian Antarctic Division.

  • Data were collected during deployments of an instrumented Remotely Operated Vehicle on 5 sampling days to determine sea ice physical properties and measure transmitted under-ice radiance spectra (combined with surface irradiance measurements) to estimate the spatial distribution and temporal development of ice algal biomass in land-fast sea ice. The ROV was instrumented with a navigation/positioning system (linked to surface GPS), upward-looking sonar and accurate depth sensor (Valeport 500 (to determine sea-ice draft)), and a upward-looking TriOS Ramses radiance sensor as well as several video-cameras collecting under-ice footage. Parallel measurements included surface irradiance measurements. A readme file in the download explains the folder structure of the dataset.

  • Metadata record for data expected from ASAC Project 2767 See the link below for public details on this project. A multidisciplinary survey of the processes linking sea ice with biological elements of Antarctic marine ecosystems was conducted in winter 2007. The survey provided large-scale information on sea ice biological and physical parameters in the 100-130 degree East sector off East Antarctica. The distribution of sea ice algae and krill were measured using various methods including ice coring surveys and trawls. These measurements were complemented by shipborne measurements and an intensive sea ice sampling program. Use of an ROV was attempted but did not result in quantitative/geo-referenced data. Under-ice video files are available from the Chief-Investigator. Individual word documents are available from this metadata record for each ice station. These contain information on the ice station number, date and time of record and the parameters/ samples.

  • Described fully in (https://doi.org/10.21203/rs.3.rs-636839/v1 holder). Data The main CEL method, and a subsidiary Coastal Exposure Index or CEI (both described below), are based on daily sea-ice concentration products for the period 1979 through 2020. These products are derived from the multi-satellite passive-microwave brightness temperature time series using the NASA Team algorithm, mapped at 25 km x 25 km resolution and obtained from the NASA National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC). Both algorithms are designed to be adaptable for different resolution data. Complete coverage of the entire Antarctic coastal and sea-ice zones is obtained on a daily basis, except for 1979-July 1987 (once every two days). Missing single days during this period are interpolated from the adjoining day's sea-ice concentration values. Averages and climatologies are based on the period 1979-2020, unless otherwise stated. The continental land mask used (gsfc_25s.msk) is also obtained from NSIDC, and includes ice shelves (the seaward extremities of which are taken here to be coastline). Coastline grid points are defined from the continental land mask as any ocean grid point that has land/ice sheet adjacent to it. Analysis methods For this study, we developed two new but different algorithms for quantifying and monitoring Antarctic coastal exposure: the Coastal Exposure Index (CEI) and Coastal Exposure Length (CEL) method. The CEI technique is based on the detection of sea ice presence/absence radially out (northwards) from the coastline along each meridian (at one degree longitudinal spacing), following masking of the ice sheet. The CEI is simply defined as the number of longitudes with no sea ice (threshold set to less than 15% following convention) to the north of the continent, and hence runs from zero to 360. This methodology is trivial and code for this is not included. CEL is defined as the length (in kms) of the Antarctic coastal perimeter with no adjacent sea ice anywhere offshore (i.e. total exposure of the coast to the open Southern Ocean with no intervening sea ice), but excluding coastal polynyas. By this method, we use the land mask to determine if each coastal grid point has an immediately-adjacent ocean grid point that is ice-free (i.e. has a sea-ice concentration of less than 15%). If this criterion is met, then a nearest (adjoining) neighbour-testing technique is used to determine whether that ocean grid point is exposed in some way to the wider open ocean or is bound by neighbouring sea ice offshore. If any of the neighbouring grid points are classified as “exposed”, or if the total area of neighbouring ice-free grid points exceeds an arbitrary cut-off of 500,000 km2, then that coastal grid point is classified as “exposed”. Otherwise, the grid point and all sea-ice-free neighbouring grid points are deemed to be bounded by sea ice and are classified as a coastal polynya. The length of individual exposed coastal grid points is estimated by taking the square root of the respective pixel area. The length of coastal exposure, either regionally or net circum-Antarctic, is then simply the sum of the length of exposed coastal grid points. The IDL code used for calculating CEL is included here.

  • Two Waves In Ice Observation Systems (Kohout, Alison L., Bill Penrose, Scott Penrose, and Michael J M Williams. 2015. “A Device for Measuring Wave-Induced Motion of Ice Floes in the Antarctic Marginal Ice Zone.” Annals of Glaciology 56 (69): 415–24. doi:10.3189/2015AoG69A600) were deployed about 1.5 km apart on ice floes close to latitude 62.8 S and longitude 29.8 E on 4th July 2017 (NYU1 and NYU2). The region where the instruments were deployed (Antarctic Marginal Ice Zone) consisted of first-year ice on average 40 – 60 cm thick. The instruments were deployed by hand by three people, lowered by crane from the ship to the ice on a basket cradle. NYU 1 was deployed on a rectangular ice floe of length 8 m and width 3 m, with a thickness of about 40 – 50 cm. NYU 2 was deployed on a triangular ice floe of length 4 m and thickness 40 cm. The temporal resolution is variability (every 15 minutes to 2 hourly). The survival of the sensors depended on staying fixed to the floe and the battery life. On 12th July, the sampling rate of NYU 2 was reduced from 15 minutes to 2 hourly to extend the battery life. On 13th July, NYU 1 overheated and the battery dropped below the operating voltage. NYU 2 continued to send back data for another six days, but then stopped sending data for an unknown reason on 19th July. Records can support 1. the assessment of metocean conditions in the Southern Oceans; and 2. calibration and validation of wave and global circulation models.

  • During the Antarctic Division BIOMASS Experiment III (ADBEX III) cruise of the Nella Dan (Oct - Dec 1985), sea ice cores were drilled at 13 stations. Stratigraphy of the cores recorded, along with borehole temperatures. In addition to visual notes, photographs for each of the cores were taken - the negatives of these pictures are archived with the notes made. Physical records are archived at the Australian Antarctic Division.

  • A summary of landfast sea ice coverage and the changes in the distance between the penguin colony at Point Geologie and the nearest span of open water on the Adelie Land coast in East Antarctica. The data were derived from cloud-free NOAA Advanced Very High Resolution Radiometer (AVHRR) data acquired between 1-Jan-1992 and 31-Dec-1999. The areal extent and variability of fast ice along the Adelie Land coast were mapped using time series of NOAA AVHRR visible and thermal infrared (TIR) satellite images collected at Casey Station (66.28 degrees S, 110.53 degrees E). The AVHRR sensor is a 5-channel scanning radiometer with a best ground resolution of 1.1 km at nadir (Cracknell 1997, Kidwell 1997). The period covered began in 1992 due to a lack of sufficient AVHRR scans of the region of interest prior to this date and ended in 1999 (work is underway to extend the analysis forward in time). While cloud cover is a limiting factor for visible-TIR data, enough data passes were acquired to provide sufficient cloud-free images to resolve synoptic-scale formation and break-up events. Of 10,297 AVHRR images processed, 881 were selected for fast ice analysis, these being the best for each clear (cloud-free) day. The aim was to analyse as many cloud-free images as possible to resolve synoptic-scale variability in fast ice distribution. In addition, a smaller set of cloud-free images were obtained from the Arctic and Antarctic Research Center (AARC) at Scripps Institution of Oceanography, comprising 227 Defense Meteorological Satellite Program (DMSP) Operational Linescan Imager (OLS) images (2.7 km resolution) and 94 NOAA AVHRR images at 4 km resolution. The analysis also included 2 images (spatial resolution 140 m) from the US Argon surveillance satellite programme, originally acquired in 1963 and obtained from the USGS EROS Data Center (available at: edcsns17.cr.usgs.gov/EarthExplorer/). Initial image processing was carried out using the Common AVHRR Processing System (CAPS) (Hill 2000). This initially produces 3 brightness temperature (TB) bands (AVHRR channels 3 to 5) to create an Ice Surface Temperature (IST) map (after Key 2002) and to enable cloud clearing (after Key 2002 and Williams et al. 2002). Fast ice area was then calculated from these data through a multi-step process involving user intervention. The first step involved correcting for anomalously warm pixels at the coast due to adiabatic warming by seaward-flowing katabatic winds. This was achieved by interpolating IST values to fast ice at a distance of 15 pixels to the North/South and East/ West. The coastline for ice sheet (land) masking was obtained from Lorenzin (2000). Step 2 involved detecting open water and thin sea ice areas by their thermal signatures. Following this, old ice (as opposed to newly-formed ice) was identified using 2 rules: the difference between the IST and TB (band 4, 10.3 to 11.3 microns) for a given pixel is plus or minus 1 K and the IST is less than 250 K. The final step, i.e. determination of the fast ice area, initially applied a Sobel edge-detection algorithm (Gonzalez and Woods 1992) to identify all pixels adjacent to the coast. A segmentation algorithm then assigned a unique value to each old ice area. Finally, all pixels adjacent to the coast were examined using both the segmented and edge-detected images. If a pixel had a value (i.e. it was segmented old ice), then this segment was assumed to be attached to the coast. This segment's value was noted and every pixel with the same value was classified as fast ice. The area was then the product of the number of fast ice pixels and the resolution of each pixel. A number of factors affect the accuracy of this technique. Poorly navigated images and large sensor scan angles detrimentally impact image segmentation, and every effort was taken to circumvent this. Moreover, sub-pixel scale clouds and leads remain unresolved and, together with water vapour from leads and polynyas, can contaminate the TB. In spite of these potential shortcomings, the algorithm gives reasonable and consistent results. The accuracy of the AVHRR-derived fast ice extent retrievals was tested by comparison with near- contemporary results from higher resolution satellite microwave data, i.e. from the Radarsat-1 ScanSAR (spatial resolution 100 m over a 500 km swath) obtained from the Alaska Satellite Facility. The latter were derived from a 'snapshot' study of East Antarctic fast ice by Giles et al. (2008) using 4 SAR images averaged over the period 2 to 18 November 1997. This gave an areal extent of approximately 24,700 km2. The comparative AVHRR-derived extent was approximately 22,240 km2 (average for 3 to 14 November 1997). This is approximately 10% less than the SAR estimate, although the estimates (images) were not exactly contemporary. Time series of ScanSAR images, in combination with bathymetric data derived from Porter-Smith (2003), were also used to determine the distribution of grounded icebergs. At the 5.3 GHz frequency (? = 5.6 cm) of the ScanSAR, icebergs can be resolved as high backscatter (bright) targets that are, in general, readily distinguishable from sea ice under cold conditions (Willis et al. 1996). In addition, an estimate was made from the AVHRR derived fast ice extent product of the direct-path distance between the colony at Point Geologie and the nearest open water or thin ice. This represented the shortest distance that the penguins would have to travel across consolidated fast ice in order to reach foraging grounds. A caveat is that small leads and breaks in the fast ice remain unresolved in this satellite analysis, but may be used by the penguins. We examine possible relationships between variability in fast ice extent and the extent and characteristics of the surrounding pack ice (including the Mertz Glacier polynya to the immediate east) using both AVHRR data and daily sea ice concentration data from the DMSP Special Sensor Microwave/Imager (SSM/I) for the sector 135 to 145 degrees E. The latter were obtained from the US National Snow and Ice Data Center for the period 1992 to 1999 inclusive (Comiso 1995, 2002). The effect of variable atmospheric forcing on fast ice variability was determined using meteorological data from the French coastal station Dumont d'Urville (66.66 degrees S, 140.02 degrees E, WMO #89642, elevation 43 m above mean sea level), obtained from the SCAR READER project ( www.antarctica.ac.uk/met/READER/). Synoptic- scale circulation patterns were examined using analyses from the Australian Bureau of Meteorology Global Assimilation and Prediction System, or GASP (Seaman et al. 1995).

  • This dataset contains data relating to an experimental method in which sea-ice samples were measured in an S-band microwave waveguide. This was conducted as a part of the 2012 SIPEX 2 (Sea Ice Physics and Ecosystems EXperiment) marine science voyage. A specially designed waveguide apparatus was connected to an Agilent FieldFox Portable Network Analyzer. Small parallelopipeds (7 cm X 3 cm X 1.9 cm) of sea ice were cut with a hand saw in a specially designed jig which holds an initially cylindrical core. The samples were placed at the end of the waveguide, configured to measure the vertical component of the effective complex permittivity tensor, and microwaves of frequency 2.9 GHz were sent down the tube. The samples were sized precisely to fit snugly in the end of the waveguide in order to minimize spurious reflections. The FieldFox recorded the coefficients of the scattering matrix, from which the complex permittivity can be computed. Sample temperature was taken both before and immediately after insertion into the waveguide. In order to assess the presence of off-vertical components of the electromagnetic field and how they may affect the measurements, a second sample was prepared with an orthogonal orientation, adjacent to the first sample. The same microwave measurements were taken on the second sample, to be later correlated with those from the first sample. The samples were stored in the freezer for later crystallographic analysis, and subsequently melted for salinity measurements. Prior to melting the samples were measured using callipers to determine their dimensions precisely. Samples were measured along each face at their minimum and maximum point for their width in the direction of propagation. In most cases samples were measured in all dimensions for better error analysis. A thin vertical section, approximately 5mm thick, was taken from each microwave sample stored for analysis. These sections were placed between a pair of cross polarized plates and photographed. Photos of the crystallography cores can be found in the crystallography folder, in a sub folder titled microwave. Each photo also contains a tag indicating the core number, site taken, date, as well as a V or an H indicating whether the sample was used for measurement of the vertical (V) or off-vertical (H) response. The scattering parameters recorded by the Field Fox can be found in the Data folder. Each file is named according to the microwave core measurement it represents and whether the measurement was of the vertical (V) or off-vertical (H) response. Each contains a standard S11 scattering parameter, stored as a comma separated value (CSV) file. Raw data can be found in the raw folder, and data that has been processed for ease of Matlab import can be found in the Reformatted_for_matlab folder. This processing involves taking output data that by default has four entries in a single column vector and remapping the data to create a four column matrix, each with a single entry. Recorded values for each microwave sample can be found in the Master_Core_List.xls Excel spreadsheet, within the Microwave worksheet. This worksheet was generated directly from notebook data, and contains the date, core number, depth of interface between the two collected samples, the minimum, maximum, and average thickness along the axis of propagation, The recorded temperatures from before and after measurement, the salinity, and calculated brine volume fraction. Finally, the worksheet contains notes, and a column to indicate whether we believe this data is somehow bad. Measurement information for thicknesses along other axis than that of propagation can be found in notes, but this data may at some stage be incorporated into a separate column. Please see the notes section for reasons why a data point was determined invalid. Typically this was due to the corresponding sample breaking while cutting into the parallelepiped shape. Scans of the original notebooks containing measured salinity values, thicknesses, and temperatures from which the Permeability worksheet were created are provided in the notebooks directory.

  • During voyage 1 of 1985, sixteen ice cores were drilled from sea ice. Details from those cores include the position they were drilled, length of the core, percentage of the core that was frazil ice, and comments on the state of the core, or observations of the ice make-up. Physical records are archived at the Australian Antarctic Division.