EARTH SCIENCE > OCEANS > SALINITY/DENSITY > SALINITY
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
This dataset contains data resulting from the measurement of brine samples extracted from the sea-ice during the 2012 SIPEX 2 (Sea Ice Physics and Ecosystems Experiment) marine science voyage. The Brine was collected from partially drilled holes in the ice using suction. In some of these cases the brine analysed came from holes which correspond to permeability measurements. In these cases a core number is associated with the brine data which will correspond to the core number in the permeability data set found in the master core list Excel file. The purpose of this data set was to act as a first step to quantify the effect that extra cellular carbon may have on the physical properties of brine and sea ice. At least 1 litre of brine was collected from each partial hole for analysis. The total sample was split for the following analyses. Viscosity of the brine was measured before and after filtering out any biological components that may have been in solution or otherwise in order to assess whether or not extracellular carbon has an effect on fluid flow in sea ice. What was not used for viscosity measurements was used for chlorophyll, extra-cellular carbon and bacterial analysis to gain a sense of the level and type of biology and biological compounds in the brine to then be compared to the measured physical properties. The biological analysis will be carried out at the university of Tasmania by Sarah Ugalde. On many of these samples the complex permittivity of the brine was also measured and the data can be found in the Relative_Permitivity_of_Brine folder with each sample corresponding in core number. For info on the permittivity measurements please see the metadata in that folder.
-
This is a scanned copy of the report written by Simon Townsend on work undertaken at Davis Station during the wintering year of 1989. The report covers the following topics: - Tierny Drainage System - The hypersaline density current hypothesis tested - Ellis Fjord temperature and salinity data - Ellis Fjord long-term instrument deployment - Water tracer experiment - Organic Lake - Ellis Fjord in-situ chlorophyll-a profiles - Appendices: Platypus notes, Platypus software, Seabird instrument notes, assessment of Chelsea suspended solids meter, winches for biological use, advise under-ice instrument deployment.
-
Australian fishing vessels involved in exploratory fishing for Antarctic toothfish in East Antarctica under the auspices of the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) collected data required under their exploratory fishing permit. Conductivity, temperature and depth (CTD) loggers were attached to bottom longlines sets to collect data while fishing for Antarctic toothfish in Antarctic waters. The data relates to Objective 2 of the research work required: Collect and utilise environmental data to inform spatial management approaches for the conservation of toothfish, bycatch species and representative areas of benthic biodiversity (CCAMLR 2016). Data were collected on two fishing vessels during the austral summers (December to February) of 2015/16, 2016/17 and 2017/18 in CCAMLR Divisions 58.4.1 and 58.4.2. The data were collected with DST CTD (Conductivity, Temperature and Depth Recorder) from Star-Oddi (Conductivity: 13-50 mS/cm, maximum depth: 2400 m). Files were then downloaded with SeaStar and are available in the original data format. Recordings were made at 5 or 10 second intervals for the duration of up to around 24h, recording data throughout the water column while setting the longline and then while stationary on the sea floor. Each deployment has data on time, temperature (degrees C), salinity (psu), conductivity (mS/cm) and depth (m), and is linked to geographical coordinates. Number of deployments: 2015/16: 34 2016/17: 31 2017/18: 75 CCAMLR (2016) Joint research proposal for the Dissostichus spp. exploratory fishery in East Antarctica (Divisions 58.4.1 and 58.4.2) by Australia, France, Japan, Republic of Korea and Spain. Delegations of Australia, France, Japan, Republic of Korea and Spain. Report to Fish Stock Assessment Working Group, WG-FSA-16/29, CCAMLR, Hobart, Australia. Dates and times in the data files are recorded in UTC. Further information is provided in a pdf document in the download file.
-
This dataset contains the underway data collected during the Polar Bird Voyage 2 1998-99. This voyage visited Mawson, Prydz Bay, Casey and Macquarie Island, departing from and returning to Hobart. Underway data were logged from a fluorometer and thermosalinograph and are available online via the Australian Antarctic Division Data Centre web page (or via the Related URL given below). For further information, see the Marine Science Support Voyage Report at the Related URL below.
-
Water density and salinity readings from Davis during the under-ice diving program in 1982. The written logs are archived at the Australian Antarctic Division.
-
During 1977, many measurements were made of the sea temperature and salinity near Mawson base, taking the readings through the sea ice. Readings for each site were taken at depths that were multiples of 5, usually down to 100m (where possible). Measurements are recorded in log books, archived at the Australian Antarctic Division. Logbook(s): Glaciology Sea Ice Temperature and Salinity, Mawson 1977 Book 1 Glaciology Sea Ice Temperature and Salinity, Mawson 1977 Book 2 Glaciology Sea Ice Temperature and Salinity, Mawson 1977 Book 3
-
Total carbon dioxide and total alkalinity analysis of niskin bottle samples collected on CTD casts. All data have been stored in a single excel file. Measurements were made on the CEAMARC voyage of the Aurora Australis - voyage 3 of the 2008-2008 summer season. See other CEAMARC metadata records for more information.
-
This indicator is no longer maintained, and is considered OBSOLETE. INDICATOR DEFINITION Measurements of sea surface salinity in the Southern Ocean. Measurements are averaged over latitude bands: 40-50 deg S, 50-60 deg S, 60 deg S-continent. TYPE OF INDICATOR There are three types of indicators used in this report: 1.Describes the CONDITION of important elements of a system; 2.Show the extent of the major PRESSURES exerted on a system; 3.Determine RESPONSES to either condition or changes in the condition of a system. This indicator is one of: CONDITION RATIONALE FOR INDICATOR SELECTION Australian and Antarctic climate and marine living resources are sensitive to the distribution of ocean salinity. Sea surface values are relatively easy to monitor, and therefore can be used as a relevant indicator of the state of the ocean environment. The information provided by long records of sea surface salinity is needed to detect changes in the Southern Ocean resulting from climate change; to test climate model predictions; to develop an understanding of links between the Ocean and climate variability in Australia; and for sustainable development of marine resources. DESIGN AND STRATEGY FOR INDICATOR MONITORING PROGRAM Spatial scale: Southern Ocean: 40 deg S to the Antarctic continent Frequency: Monthly averages over summer Measurement technique: Measurements of sea surface salinity from Antarctic supply ships. RESEARCH ISSUES Sea surface salinity has not been previously used as a spatially averaged environmental indicator. Some experimentation with past data are required to define the most appropriate averaging strategy. New technologies like profiling Argo floats need to be exploited to provide better spatial and temporal coverage of salinity in the Southern Ocean. LINKS TO OTHER INDICATORS Sea surface temperature Sea ice extent and concentration Chlorophyll concentrations concentrations
-
Australian vessels fishing in the Commonwealth managed fishery for Patagonian Toothfish and mackerel icefish in the Heard Island and MacDonald Island area deployed conductivity, temperature and depth (CTD) loggers attached to their fishing gear. In most cases CTDs were deployed on demersal longlines but in some cases they were attached to trawl nets and traps. Data were collected on five fishing vessels during the fishing seasons of 2019/20 and 2020/21 The data were collected with a CTD (Conductivity, Temperature and Depth Recorder) from the Sea Mammal Research Unit (SMRU) at St Andrew’s University Scotland. Files were downloaded with their TagConfig software in text (.txt) format. Recordings were made at (typically) 1 second intervals for the duration of the fishing event, recording data throughout the water column while setting the gear, then while fishing on the sea floor and again through the water column when the gear was retrieved. Each data file has data on date/time, pressure referenced to surface pressure (dbar), absolute pressure (dbar), temperature (°C), conductivity *mS/cm) and salinity (psu). The data are currently not linked to geographical coordinates which are confidential, but these may be able to be released on contact with the data owner and subject to appropriate confidentiality arrangements. Number of deployments: 2019/20: 25 2020/21: 27
-
This dataset is a collection of marine environmental data layers suitable for use in Southern Ocean species distribution modelling. All environmental layers have been generated at a spatial resolution of 0.1 degrees, covering the Southern Ocean extent (80 degrees S - 45 degrees S, -180 - 180 degrees). The layers include information relating to bathymetry, sea ice, ocean currents, primary production, particulate organic carbon, and other oceanographic data. An example of reading and using these data layers in R can be found at https://australianantarcticdivision.github.io/blueant/articles/SO_SDM_data.html. The following layers are provided: 1. Layer name: depth Description: Bathymetry. Downloaded from GEBCO 2014 (0.0083 degrees = 30sec arcmin resolution) and set at resolution 0.1 degrees. Then completed with the bathymetry layer manually corrected and provided in Fabri-Ruiz et al. (2017) Value range: -8038.722 - 0 Units: m Source: This study. Derived from GEBCO URL: https://www.gebco.net/data_and_products/gridded_bathymetry_data/ Citation: Fabri-Ruiz S, Saucede T, Danis B and David B (2017). Southern Ocean Echinoids database_An updated version of Antarctic, Sub-Antarctic and cold temperate echinoid database. ZooKeys, (697), 1. 2. Layer name: geomorphology Description: Last update on biodiversity.aq portal. Derived from O'Brien et al. (2009) seafloor geomorphic feature dataset. Mapping based on GEBCO contours, ETOPO2, seismic lines). 27 categories Value range: 27 categories Units: categorical Source: This study. Derived from Australian Antarctic Data Centre URL: https://data.aad.gov.au/metadata/records/Polar_Environmental_Data Citation: O'Brien, P.E., Post, A.L., and Romeyn, R. (2009) Antarctic-wide geomorphology as an aid to habitat mapping and locating vulnerable marine ecosystems. CCAMLR VME Workshop 2009. Document WS-VME-09/10 3. Layer name: sediments Description: Sediment features Value range: 14 categories Units: categorical Source: Griffiths 2014 (unpublished) URL: http://share.biodiversity.aq/GIS/antarctic/ 4. Layer name: slope Description: Seafloor slope derived from bathymetry with the terrain function of raster R package. Computation according to Horn (1981), ie option neighbor=8. The computation was done on the GEBCO bathymetry layer (0.0083 degrees resolution) and the resolution was then changed to 0.1 degrees. Unit set at degrees. Value range: 0.000252378 - 16.94809 Units: degrees Source: This study. Derived from GEBCO URL: https://www.gebco.net/data_and_products/gridded_bathymetry_data/ Citation: Horn, B.K.P., 1981. Hill shading and the reflectance map. Proceedings of the IEEE 69:14-47 5. Layer name: roughness Description: Seafloor roughness derived from bathymetry with the terrain function of raster R package. Roughness is the difference between the maximum and the minimum value of a cell and its 8 surrounding cells. The computation was done on the GEBCO bathymetry layer (0.0083 degrees resolution) and the resolution was then changed to 0.1 degrees. Value range: 0 - 5171.278 Units: unitless Source: This study. Derived from GEBCO URL: https://www.gebco.net/data_and_products/gridded_bathymetry_data/ 6. Layer name: mixed layer depth Description: Summer mixed layer depth climatology from ARGOS data. Regridded from 2-degree grid using nearest neighbour interpolation Value range: 13.79615 - 461.5424 Units: m Source: https://data.aad.gov.au/metadata/records/Polar_Environmental_Data 7. Layer name: seasurface_current_speed Description: Current speed near the surface (2.5m depth), derived from the CAISOM model (Galton-Fenzi et al. 2012, based on ROMS model) Value range: 1.50E-04 - 1.7 Units: m/s Source: This study. Derived from Australian Antarctic Data Centre URL: https://data.aad.gov.au/metadata/records/Polar_Environmental_Data Citation: see Galton-Fenzi BK, Hunter JR, Coleman R, Marsland SJ, Warner RC (2012) Modeling the basal melting and marine ice accretion of the Amery Ice Shelf. Journal of Geophysical Research: Oceans, 117, C09031. http://dx.doi.org/10.1029/2012jc008214, https://data.aad.gov.au/metadata/records/polar_environmental_data 8. Layer name: seafloor_current_speed Description: Current speed near the sea floor, derived from the CAISOM model (Galton-Fenzi et al. 2012, based on ROMS) Value range: 3.40E-04 - 0.53 Units: m/s Source: This study. Derived from Australian Antarctic Data Centre URL: https://data.aad.gov.au/metadata/records/Polar_Environmental_Data Citation: see Galton-Fenzi BK, Hunter JR, Coleman R, Marsland SJ, Warner RC (2012) Modeling the basal melting and marine ice accretion of the Amery Ice Shelf. Journal of Geophysical Research: Oceans, 117, C09031. http://dx.doi.org/10.1029/2012jc008214, https://data.aad.gov.au/metadata/records/polar_environmental_data 9. Layer name: distance_antarctica Description: Distance to the nearest part of the Antarctic continent Value range: 0 - 3445 Units: km Source: https://data.aad.gov.au/metadata/records/Polar_Environmental_Data 10. Layer name: distance_canyon Description: Distance to the axis of the nearest canyon Value range: 0 - 3117 Units: km Source: https://data.aad.gov.au/metadata/records/Polar_Environmental_Data 11. Layer name: distance_max_ice_edge Description: Distance to the mean maximum winter sea ice extent (derived from daily estimates of sea ice concentration) Value range: -2614.008 - 2314.433 Units: km Source: https://data.aad.gov.au/metadata/records/Polar_Environmental_Data 12. Layer name: distance_shelf Description: Distance to nearest area of seafloor of depth 500m or shallower Value range: -1296 - 1750 Units: km Source: https://data.aad.gov.au/metadata/records/Polar_Environmental_Data 13. Layer name: ice_cover_max Description: Ice concentration fraction, maximum on [1957-2017] time period Value range: 0 - 1 Units: unitless Source: BioOracle accessed 24/04/2018, see Assis et al. (2018) URL: http://www.bio-oracle.org/ Citation: Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA and De Clerck O (2018). Bio_ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284 , see also https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis 14. Layer name: ice_cover_mean Description: Ice concentration fraction, mean on [1957-2017] time period Value range: 0 - 0.9708595 Units: unitless Source: BioOracle accessed 24/04/2018, see Assis et al. (2018) URL: http://www.bio-oracle.org/ Citation: Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA and De Clerck O (2018). Bio_ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284 , see also https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis 15. Layer name: ice_cover_min Description: Ice concentration fraction, minimum on [1957-2017] time period Value range: 0 - 0.8536261 Units: unitless Source: BioOracle accessed 24/04/2018, see Assis et al. (2018) URL: http://www.bio-oracle.org/ Citation: Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA and De Clerck O (2018). Bio_ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284 , see also https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis 16. Layer name: ice_cover_range Description: Ice concentration fraction, difference maximum-minimum on [1957-2017] time period Value range: 0 - 1 Units: unitless Source: BioOracle accessed 24/04/2018, see Assis et al. (2018) URL: http://www.bio-oracle.org/ Citation: Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA and De Clerck O (2018). Bio_ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284 , see also https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis 17. Layer name: ice_thickness_max Description: Ice thickness, maximum on [1957-2017] time period Value range: 0 - 3.471811 Units: m Source: BioOracle accessed 24/04/2018, see Assis et al. (2018) URL: http://www.bio-oracle.org/ Citation: Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA and De Clerck O (2018). Bio_ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284 , see also https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis 18. Layer name: ice_thickness_mean Description: Ice thickness, mean on [1957-2017] time period Value range: 0 - 1.614133 Units: m Source: BioOracle accessed 24/04/2018, see Assis et al. (2018) URL: http://www.bio-oracle.org/ Citation: Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA and De Clerck O (2018). Bio_ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284 , see also https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis 19. Layer name: ice_thickness_min Description: Ice thickness, minimum on [1957-2017] time period Value range: 0 - 0.7602701 Units: m Source: BioOracle accessed 24/04/2018, see Assis et al. (2018) URL: http://www.bio-oracle.org/ Citation: Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA and De Clerck O (2018). Bio_ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284 , see also https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis 20. Layer name: ice_thickness_range Description: Ice thickness, difference maximum-minimum on [1957-2017] time period Value range: 0 - 3.471811 Units: m Source: BioOracle accessed 24/04/2018, see Assis et al. (2018) URL: http://www.bio-oracle.org/ Citation: Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA and De Clerck O (2018). Bio_ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284 , see also https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis 21. Layer name: chla_ampli_alltime_2005_2012 Description: Chlorophyll-a concentrations obtained from MODIS satellite data. Amplitude of pixel values (difference between maximal and minimal value encountered by each pixel during all months of the period [2005-2012]) Value range: 0 - 77.15122 Units: mg/m^3 Source: https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Monthly/9km/chlor_a/ URL: https://modis.gsfc.nasa.gov/data/dataprod/chlor_a.php 22. Layer name: chla_max_alltime_2005_2012 Description: Chlorophyll-a concentrations obtained from MODIS satellite data. Maximal value encountered by each pixel during all months of the period [2005-2012] Value range: 0 - 77.28562 Units: mg/m^3 Source: https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Monthly/9km/chlor_a/ URL: https://modis.gsfc.nasa.gov/data/dataprod/chlor_a.php 23. Layer name: chla_mean_alltime_2005_2012 Description: Chlorophyll-a concentrations obtained from MODIS satellite data. Mean value of each pixel during all months of the period [2005-2012] Value range: 0 - 30.42691 Units: mg/m^3 Source: https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Monthly/9km/chlor_a/ URL: https://modis.gsfc.nasa.gov/data/dataprod/chlor_a.php 24. Layer name: chla_min_alltime_2005_2012 Description: Chlorophyll-a concentrations obtained from MODIS satellite data. Minimal value encountered by each pixel during all months of the period [2005-2012] Value range: 0 - 29.02929 Units: mg/m^3 Source: https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Monthly/9km/chlor_a/ URL: https://modis.gsfc.nasa.gov/data/dataprod/chlor_a.php 25. Layer name: chla_sd_alltime_2005_2012 Description: Chlorophyll-a concentrations obtained from MODIS satellite data. Standard deviation value of each pixel during all months of the period [2005-2012] Value range: 0 - 27.9877 Units: mg/m^3 Source: https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Monthly/9km/chlor_a/ URL: https://modis.gsfc.nasa.gov/data/dataprod/chlor_a.php 26. Layer name: POC_2005_2012_ampli Description: Particulate organic carbon, model Lutz et al. (2007). Amplitude value (difference maximal and minimal value, see previous layers) all seasonal layers [2005-2012] Value range: 0 - 1.31761 Units: g/m^2/d Source: This study. Following Lutz et al. (2007) URL: https://data.aad.gov.au/metadata/records/Particulate_carbon_export_flux_layers Citation: Lutz MJ, Caldeira K, Dunbar RB and Behrenfeld MJ (2007). Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research: Oceans, 112(C10). 27. Layer name: POC_2005_2012_max Description: Particulate organic carbon, model Lutz et al. (2007). Maximal value encountered on each pixel among all seasonal layers [2005-2012] Value range: 0.00332562 - 1.376601 Units: g/m^2/d Source: This study. Following Lutz et al. (2007) URL: https://data.aad.gov.au/metadata/records/Particulate_carbon_export_flux_layers Citation: Lutz MJ, Caldeira K, Dunbar RB and Behrenfeld MJ (2007). Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research: Oceans, 112(C10). 28. Layer name: POC_2005_2012_mean Description: Particulate organic carbon, model Lutz et al. (2007). Mean all seasonal layers [2005-2012] Value range: 0.003184335 - 0.5031364 Units: g/m^2/d Source: This study. Following Lutz et al. (2007) URL: https://data.aad.gov.au/metadata/records/Particulate_carbon_export_flux_layers Citation: Lutz MJ, Caldeira K, Dunbar RB and Behrenfeld MJ (2007). Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research: Oceans, 112(C10). 29. Layer name: POC_2005_2012_min Description: Particulate organic carbon, model Lutz et al. (2007). Minimal value encountered on each pixel among all seasonal layers [2005-2012] Value range: 0.003116508 - 0.1313119 Units: g/m^2/d Source: This study. Following Lutz et al. (2007) URL: https://data.aad.gov.au/metadata/records/Particulate_carbon_export_flux_layers Citation: Lutz MJ, Caldeira K, Dunbar RB and Behrenfeld MJ (2007). Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research: Oceans, 112(C10). 30. Layer name: POC_2005_2012_sd Description: Particulate organic carbon, model Lutz et al. (2007). Standard deviation all seasonal layers [2005-2012] Value range: 3.85E-08 - 0.4417001 Units: g/m^2/d Source: This study. Following Lutz et al. (2007) URL: https://data.aad.gov.au/metadata/records/Particulate_carbon_export_flux_layers Citation: Lutz MJ, Caldeira K, Dunbar RB and Behrenfeld MJ (2007). Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research: Oceans, 112(C10). 31. Layer name: seafloor_oxy_1955_2012_ampli Description: Amplitude (difference maximum-minimum) value encountered for each pixel on all month layers of seafloor oxygen concentration over [1955-2012], modified from WOCE Value range: 0.001755714 - 5.285187 Units: mL/L Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 32. Layer name: seafloor_oxy_1955_2012_max Description: Maximum value encountered for each pixel on all month layers of oxygen concentration over [1955-2012], modified from WOCE Value range: 3.059685 - 11.52433 Units: mL/L Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 33. Layer name: seafloor_oxy_1955_2012_mean Description: Mean seafloor oxygen concentration over [1955-2012] (average of all monthly layers), modified from WOCE Value range: 2.836582 - 8.858084 Units: mL/L Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 34. Layer name: seafloor_oxy_1955_2012_min Description: Minimum value encountered for each pixel on all month layers of seafloor oxygen concentration over [1955-2012], modified from WOCE Value range: 0.4315577 - 8.350794 Units: mL/L Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 35. Layer name: seafloor_oxy_1955_2012_sd Description: Standard deviation seafloor oxygen concentration over [1955-2012] (of all monthly layers), modified from WOCE Value range: 0.000427063 - 1.588707 Units: mL/L Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 36. Layer name: seafloor_sali_2005_2012_ampli Description: Amplitude (difference maximum-minimum) value encountered for each pixel on all month layers of seafloor salinity over [2005-2012], modified from WOCE Value range: 0.000801086 - 4.249901 Units: PSU Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 37. Layer name: seafloor_sali_2005_2012_max Description: Maximum value encountered for each pixel on all month layers of seafloor salinity over [2005-2012], modified from WOCE Value range: 32.90105 - 35.3997 Units: PSU Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 38. Layer name: seafloor_sali_2005_2012_mean Description: Mean seafloor salinity over [2005-2012] (average of all monthly layers), modified from WOCE Value range: 32.51107 - 35.03207 Units: PSU Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 39. Layer name: seafloor_sali_2005_2012_min Description: Minimum value encountered for each pixel on all month layers of seafloor salinity over [2005-2012], modified from WOCE Value range: 29.8904 - 34.97735 Units: PSU Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 40. Layer name: seafloor_sali_2005_2012_sd Description: Standard deviation seafloor salinity over [2005-2012] (of all monthly layers), modified from WOCE Value range: 0.000251834 - 1.36245 Units: PSU Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 41. Layer name: seafloor_temp_2005_2012_ampli Description: Amplitude (difference maximum-minimum) value encountered for each pixel on all month layers of seafloor temperature over [2005-2012], modified from WOCE Value range: 0.0086 - 8.625669 Units: degrees C Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 42. Layer name: seafloor_temp_2005_2012_max Description: Maximum value encountered for each pixel on all month layers of seafloor temperature over [2005-2012], modified from WOCE Value range: -2.021455 - 15.93171 Units: degrees C Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 43. Layer name: seafloor_temp_2005_2012_mean Description: Mean seafloor temperature over [2005-2012] (average of all monthly layers), modified from WOCE Value range: -2.085796 - 13.23161 Units: degrees C Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 44. Layer name: seafloor_temp_2005_2012_min Description: Minimum value encountered for each pixel on all month layers of seafloor temperature over [2005-2012], modified from WOCE Value range: -2.1 - 11.6431 Units: degrees C Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 45. Layer name: seafloor_temp_2005_2012_sd Description: Standard deviation seafloor temperature over [2005-2012] (of all monthly layers), modified from WOCE Value range: 0.002843571 - 2.877084 Units: degrees C Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 46. Layer name: extreme_event_max_chl_2005_2012_ampli Description: Amplitude (difference maximum-minimum) number of the number of extreme events calculated between 2005 and 2012 Value range: integer values 0 - 3 Units: unitless Source: derived from chlorophyll-a concentration layers 47. Layer name: extreme_event_max_chl_2005_2012_max Description: Maximum number of extreme events calculated between 2005 and 2012 Value range: integer values 0 - 5 Units: unitless Source: derived from chlorophyll-a concentration layers 48. Layer name: extreme_event_max_chl_2005_2012_mean Description: Mean of the number of extreme events calculated between 2005 and 2012 Value range: 0 - 3.875 Units: unitless Source: derived from chlorophyll-a concentration layers 49. Layer name: extreme_event_max_chl_2005_2012_min Description: Minimum number of extreme events calculated between 2005 and 2012 Value range: integer values 0 - 5 Units: unitless Source: derived from chlorophyll-a concentration layers 50. Layer name: extreme_event_min_chl_2005_2012_ampli Description: Amplitude (difference maximum-minimum) number of the number of extreme events calculated between 2005 and 2012 Value range: integer values 0 - 9 Units: unitless Source: derived from chlorophyll-a concentration layers 51. Layer name: extreme_event_min_chl_2005_2012_max Description: Maximum number of extreme events calculated between 2005 and 2012 Value range: integer values 0 - 11 Units: unitless Source: derived from chlorophyll-a concentration layers 52. Layer name: extreme_event_min_chl_2005_2012_mean Description: Mean of the number of extreme events calculated between 2005 and 2012 Value range: 0 - 11 Units: unitless Source: derived from chlorophyll-a concentration layers 53. Layer name: extreme_event_min_chl_2005_2012_min Description: Minimum number of extreme events calculated between 2005 and 2012 Value range: integer values 0 - 11 Units: unitless Source: derived from chlorophyll-a concentration layers 54. Layer name: extreme_event_min_oxy_1955_2012_nb Description: Number of extreme events (minimal seafloor oxygen concentration records) that happened between January and December of the year Value range: integer values 0 - 12 Units: per year Source: derived from seafloor oxygen concentration layers 55. Layer name: extreme_event_max_sali_2005_2012_nb Description: Number of extreme events (maximal seafloor salinity records) that happened between January and December of the year Value range: integer values 0 - 12 Units: per year Source: derived from seafloor salinity layers 56. Layer name: extreme_event_min_sali_2005_2012_nb Description: Number of extreme events (minimal seafloor salinity records) that happened between January and December of the year Value range: integer values 0 - 12 Units: per year Source: derived from seafloor salinity layers 57. Layer name: extreme_event_max_temp_2005_2012_nb Description: Number of extreme events (maximal seafloor temperature records) that happened between January and December of the year Value range: integer values 0 - 12 Units: per year Source: derived from seafloor temperature layers 58. Layer name: extreme_event_min_temp_2005_2012_nb Description: Number of extreme events (minimal seafloor temperature records) that happened between January and December of the year Value range: integer values 0 - 12 Units: per year Source: derived from seafloor temperature layers