Keyword

EARTH SCIENCE > OCEANS > BATHYMETRY/SEAFLOOR TOPOGRAPHY > BATHYMETRY

55 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 55
  • This consolidated dataset consists of Australian Hydrographic Service (AHS) surveys HI621C, 5135 (Terrestrial), HI364, HI514, and HI607 converted to International Terrestrial Reference Frame 2000 (ITRF2000) horizontal datum with Z conversion values for multiple height datums. The data was provided to the AAD by Paul Digney of Jacobs consulting in February 2021. Included survey datasets: • HI621C_MAWSON_merged.shp • HI621C_MAWSON_merged.shp • Terrestrial_Data_5135 • HI364_HSDB_T0001_SD_100035029_op_soundings • QC_HI 514 HDCS_FDD_appraised (Mawson Approches) • HI607.Shp All data are in horizontal datum ITRF2000 and have been combined into a single ESRI geodatabase feature class titled AHS_Surveys_Mawson_ITRF2000. Attribute data shows quality information, conversion factors (shift in metres) for multiple datums and the MSL orthometric height: Column Name, Alias, Meaning Easting, Easting, Easting ITRF2000 Northing, Northing, Northing ITRF2000 CD_To_GRS8, CD_To_GRS80, LAT (Chart Datum) to the Ellipsoid LAT_to_GRS80, LAT_to_GRS80, LAT (Chart Datum) to GSR80 LAT_to_MSL_Mawson, LAT_to_MSL_Mawson, LAT to Mawson MSL Z_To_GRS80, Z_To_GRS80, Height to the Ellipsoid Z_To_MSL_Mawson, Z_To_MSL_Mawson, Local MSL orthometric height Vertical_U, Vertical_Uncertainty, How good is the Vertical Position Horizontal, Horizontal Uncertainty, How good is the Horizontal Position Uncertaint, Uncertainty Comments, Depth_Comm, Depth_Comments, Vertical uncertainty ranges from 0.05 to 0.64 m and horizontal uncertainty ranges from 0.05 to 1.0 m See the attached document ‘Metadata_Record_Mawson Final REV2.xlsx’ for further details.

  • This consolidated dataset consists of Australian Hydrographic Service (AHS) surveys HI621A and HI545 converted to International Terrestrial Reference Frame 2000 (ITRF2000) horizontal datum with Z conversion values for multiple height datums. The data was provided to the Australian Antarctic Division by Paul Digney of Jacobs consulting in February 2021. Included survey datasets: - HI621A.shp (Validated folder) - 1812_5093-HI621A_CASEY_Terrestrial.shp - QC_HI545_12pt5_appraised All data are in horizontal datum ITRF2000 and have been combined into a single ESRI geodatabase feature class titled AHS_Surveys_Casey_ITRF2000. Attribute data shows quality information, conversion factors (shift in metres) for multiple datums and the MSL orthometric height for Casey: Column Name, Alias, Meaning Easting, Easting, Easting ITRF2000 Northing, Northing, Northing ITRF2000 CD_To_GRS8, CD_To_GRS80, LAT (Chart Datum) to the Ellipsoid CD_TO_MSL_Casey, CD_To_MSL_Casey, Ellipsoid to Casey MSL Z_To_GRS80, Z_To_GRS80, Height to the Ellipsoid Z_To_MSL_Casey, Z_To_MSL_Casey, Local MSL orthometric height Vert_Uncer, Vertical_Uncertainty, How good is the Vertical Position Horiz_Unce, Horizontal Uncertainty, How good is the Horizontal Position Uncertaint, Uncertainty Comments, Depth_Comm, Depth_Comments, Vertical uncertainty ranges from 0.05 to 0.64 m and horizontal uncertainty ranges from 0.05 to 1.0 m See the attached document ‘Metadata Record Casey Final.xlsx’ for further details.

  • This terrestrial dataset was collected at Ursula Harris’s behest by Craig Hamilton and a Naval Survey team on 09 January 2018 when sea conditions prevented the team from taking bathymetric measurements. This survey was intended to fill gaps in the existing Mawson Station survey data and includes 29 previously unrecorded features comprised of bollards, HF towers, flagpoles, masts, antennae, ionosonde transmitter and receiver, the Mawson Signpost and the Douglas Mawson Bust.

  • From December 2014 to February 2015, Geoscience Australia conducted a multibeam sonar survey (GA-0348) of the coastal waters around Casey station and the adjacent Windmill Islands. The survey utilised GA's Kongsberg EM3002D multibeam echosounder, motion reference unit and C-Nav differential GPS system mounted on the Australian Antarctic Division's (AAD) science workboat the Howard Burton. The survey was a collaborative project between GA, the AAD and the Royal Australian Navy (RAN). During the survey a total of approximately 27.3 square kilometres of multibeam bathymetry, backscatter and water-column data were collected, extending coverage of a RAN multibeam survey (survey number HI545) conducted the previous season (approximately 7 square kilometres). The regions covered extended seaward of Newcomb Bay and Clark Peninsula northwest of Casey Station, and seaward of Shirley and Beall Islands to the southwest. Complimentary datasets were also collected, including 18 drop video deployments to assess the benthic ecosystem composition and 39 sediment samples to ground-truth the seafloor substrate. Macroalgae spectral analyses were also collected to develop a spectral library for possible future satellite bathymetry investigations. The new high-resolution bathymetric grid (1 metre resolution) reveals seafloor features in the Casey area in unprecedented detail.

  • This consolidated dataset consisting of Australian Hydrographic Service (AHS) surveys HI468, HI590, HI621 and HI634 converted to International Terrestrial Reference Frame 2000 (ITRF2000) horizontal datum with Z conversion values for multiple height datums. The data was provided to the AAD by Paul Digney of Jacobs consulting in February 2021. Included survey datasets: - HI468_Davis_Z43_Appraised_Part_ITRF2000 - HI468_Davis_Z44_Appraised_ITRF2000 - HI590_Davis_Part_ITRF2000 - HI621B_Davis_Merged_ITRF2000 - HI634_Davis_AreaA_ITRF2000 - HI634_Davis_AreaD_ITRF2000 - HI634_Davis_AreaF_ITRF2000 - HI634_Davis_AreaI_ITRF2000 - HI634_Davis_AreaJ3_ITRF2000 - HI634_Davis_AreaJ4_ITRF2000 - HI634_Davis_Rocks_ITRF2000 All data are in horizontal datum ITRF2000 and have been combined into a single ESRI geodatabase feature class titled AHS_Surveys_Davis_ITRF2000. Attribute data shows quality information, conversion factors (shift in metres) for multiple datums and the MSL orthometric height in the Davis 83 datum: Column Name Alias Meaning Easting, Easting, Easting ITRF2000 Northing, Northing, Northing ITRF2000 CD_To_GRS8, CD_To_GRS80, LAT (Chart Datum) to the Ellipsoid GRS80_To_D, GRS80_To_DAVIS83_MSL, Ellipsoid to DAVIS Height Datum 83 Z_To_GRS80, Z_To_GRS80, Height to the Ellipsoid Z_To_DAVIS, Z_To_DAVIS83_MSL, Local MSL orthometric height (DAVIS Height Datum 83) Vertical_U, Vertical_Uncertainty, How good is the Vertical Position Horizontal, Horizontal Uncertainty, How good is the Horizontal Position Uncertaint, Uncertainty Comments, Depth_Comm, Depth_Comments, Vertical uncertainty is 0.24 to 0.5 m for hydrographic values and 0.25 to 0.5 m for terrestrial values. See the attached document ‘Metadata_Record_Davis_Final (002).xlsx’ for further details.

  • The AADC (Australian Antarctic Data Centre) is in the process of converting all internally held spatial datasets to the ITRF2000 horizontal datum. This consolidated dataset consists of surveys HI623_alatB_gg, HI625_alatB_GG, HI632_alat_B_gg, HI632_alat_C_gg, LADSII_MMI20756_HSDB_T0001_SD_100029052_op, LADSII_MMI20756_HSDB_T0001_SD_100029053_op, LADSII_MMI20756_HSDB_T0001_SD_100029054_op converted to ITRF2000 horizontal datum with Z conversion values for multiple height datums. The data was provided to the AAD by Paul Digney of Jacobs consulting in March 2021. Included survey datasets: • HI623_alatB_gg • HI625_alatB_GG • HI632_alat_B_gg • HI632_alat_C_gg • LADSII_MMI20756_HSDB_T0001_SD_100029052_op • LADSII_MMI20756_HSDB_T0001_SD_100029053_op • LADSII_MMI20756_HSDB_T0001_SD_100029054_op All data are in horizontal datum ITRF2000 and have been combined into a single ESRI geodatabase feature class titled AHS_Surveys_Macca_ITRF2000. Attribute data shows quality information, conversion factors (shift in metres) for multiple datums and the MSL orthometric height: Column Name Alias Meaning Easting Easting Easting ITRF2000 Northing Northing Northing ITRF2000 LAT_to_GRS LAT_to_GRS LAT (Chart Datum) to GSR80 LAT_to_Mac LAT_to_Mac LAT to Macca MSL Z_To_GRS80 Z_To_GRS80 Height to the Ellipsoid Z_To_Macca Z_To_Macca Local MSL orthometric height Vertical_U Vertical_U How good is the Vertical Position Horizontal Horizontal How good is the Horizontal Position Uncertaint Uncertaint Uncertainty Comments Depth_Comm Depth_Comments Vertical uncertainty ranges from 0.5 to 1.2 m and horizontal uncertainty ranges from 2 to 5.5 m. Null values indicate unknown uncertainty. See the attached document ‘Metadata_Record_Macqaurie Island Final.xlsx’ for further details.

  • This dataset is a spreadsheet with planimetric areas of the seabed within the Heard Island and McDonald Islands Marine Reserve and adjacent Conservation Zone. The areas are provided for one hundred metre depth ranges and are given in square kilometres. The areas were calculated for the Wildlife Conservation and Fisheries research group at the Australian Antarctic Division. Depth data was sourced from a bathymetric grid of the Kerguelen Plateau by R.J.Beaman of James Cook University, Australia and P.E.O'Brien of Geoscience Australia and published by Geoscience Australia. See a Related URL below for a link to the metadata record describing the bathymetric grid. The Marine Reserve and Conservation Zone boundaries were sourced from the Australian Government's Australian Marine Parks Division. See the provided URL for a link to the department's website.

  • A summation of survey tasks conducted within the Davis Station surrounds is as follows: • Priority 1 – Wharf Area: Feature survey of a designated area surrounding the Davis wharf at a 10m grid spacing. However, due to the small area of the wharf, a 10m external buffer was applied to ensure there are no data gaps on completion of the survey and a 5m natural surface grid was collected including all services that were joined or contained within the region. • Priority 2 – Feature survey of a designated area to the North East of the Bureau of Meteorology and General Science buildings. A region approximately 150m x 380m. A detailed pickup of the existing electrical, optic fiber, telecommunication lines, high frequency radio mast and guide wires were collected including the location of the BoM instruments. Natural surface collection was collected at a 10m grid spacing.

  • Readme - Bathymetry Files Data for BROKE-WEST 2006 1) Zipped folder contains .csv files created from each acoustics ev file for Transects 1 to 11. 2) These files contain subsections of each transect of variable length (usually between 50 and 100 km). 3) No data exists for files; Transect01_01 and 01_02 as the sea floor was greater than 5000m deep in these areas and was below the range set for the sounder. 4) Each file contains 11 columns of data; Ping_date, Ping_time, Ping_milliseconds, Latitude, Longitude, Position_status, Depth, Line_Status, Ping_status, Altitude, GPS_UTC time. 5) For practical purposes, the columns of interest will be Ping_date, Ping_time, Latitude, Longitude and Depth. Other columns are ancillary acoustics information and can be ignored. Line status should be 1 (meaning good) as sea floor was only picked when it could be easily defined. If the sea floor could not be visually defined or was deemed to uncertain, it was not picked in the echogram. Hence sea floor may not be totally contiguous. 6) Depth of the sea floor was only defined for those areas deemed to be 'on transect', i.e. straight transects for acoustics survey purposes. Deviations from the transect, i.e. to pick up moorings, conduct target or routine trawls or visit nice looking bergs were deemed 'off transect' and were excluded from the analysis. 7) Sea floor depth was primarly defined for the purposes of the acoustics analysis, i.e. exclusion from the echograms. Hence the values in the files are for the 'sea floor exclusion line' that is set above the true sea floor in order to exclude noise from the analysis. This means the sea floor depths in these files are likely to be an underestimate of the true depth. The uncertainty is likely to be of the order of 2 to 10m. 8) Another source of error is that depth was calculated with values of absorption coefficient and sound speed set to default values derived from pre-cruise hydrographic data. One value for each parameter was applied to the whole data set. These values were; 0.028 dB/m (120 KhZ), 0.010 dB/m (38kHz), 0.041 dB/m (200 kHz), 0.0017 dB/m (12kHz - bathy sounder) for absorption coefficient and 1456 m/s for sound speed. 9) These values will be recalculated from the oceanographic data derived during the voyage and applied to the data set during post-processing (forthcoming analyses for May-June 2006). Revision of these parameters may cause a slight shift in the calculated depths, although this is likely to be small. 10) Reprocessing of the data may also result in more accurate bottom detection. This data should be available post June 2006 and will be sent to interested parties as soon as it is completed. 11) Dataset was created by Esmee van Wijk.

  • Bathymetry data was collected using a Simrad EK60 echosounder. The sample data have been corrected for the relative locations of GPS antenna, transducers and waterline. A sound-speed value of 1500 m/s was applied when calculating depth. The seafloor depth itself was defined firstly as the depth of the sounder-detected bottom minus 10m (contact Simrad for more information about their bottom-detection algorithm), and then modified manually where necessary to ensure that the line followed the seafloor as perceived by eye from the echogram. This is therefore a subjective process, and the true seafloor depth may vary from the perceived depth by several hundred metres in the worst cases. The greatest uncertainties are typically at greater depths, e.g. greater than 1000 m. This seafloor depth line therefore refers to the approximate depth (not range from transducer) of the seafloor less 10 m, i.e. 10 m should be added to the 'depth' values in the *.CSV file to give the 'true' seafloor depth. Depths greater than 5000 m are not available due to the 12 kHz data not being logged any deeper than this. These data are preliminary and subject to change. Bathymetry data was exported during the voyage by Belinda Ronai. Post voyage enquiries however should be directed to Toby Jarvis.