Keyword

EARTH SCIENCE > BIOSPHERE > ECOLOGICAL DYNAMICS > SPECIES/POPULATION INTERACTIONS > SPECIES LIFE HISTORY

60 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 60
  • This model was produced as part of Australian Antarctic Science project 4037 - Experimental krill biology: Response of krill to environmental change - The experimental krill research project is designed to focus on obtaining life history information of use in managing the krill fishery - the largest Antarctic fishery. In particular, the project will concentrate on studies into impacts of climate change on key aspects of krill biology and ecology. This metadata record is to reference the paper that describes the model. There is no archived data output from this data product. Taken from the abstract of the referenced paper: Estimates of productivity of Antarctic krill, Euphausia superba, are dependent on accurate models of growth and reproduction. Incorrect growth models, specifically those giving unrealistically high production, could lead to over-exploitation of the krill population if those models are used in setting catch limits. Here we review available approaches to modelling productivity and note that existing models do not account for the interactions between growth and reproduction and variable environmental conditions. We develop a new energetics moult-cycle (EMC) model which combines energetics and the constraints on growth of the moult-cycle. This model flexibly accounts for regional, inter- and intra-annual variation in temperature, food supply, and day length. The EMC model provides results consistent with the general expectations for krill growth in length and mass, including having thin krill, as well as providing insights into the effects that increasing temperature may have on growth and reproduction. We recommend that this new model be incorporated into assessments of catch limits for Antarctic krill.

  • The configuration of the East-Antarctic Atlantis model included several pages of documentation from SOKI (the Southern Ocean Knowledge and Information wiki, hosted at soki.aq in 2019). There is also an associated software package angstroms was used to couple Atlantis models to Regional Ocean Model System (ROMS). The documentation pages have been archived in PDF and WORD format here in 11 separate documents. The software package is included as an archive of the Australian Antarctic Division github repository as at 2019-07-22 with commit '2b7b10e86963195df049ded6ca842255b2335de1'. https://github.com/AustralianAntarcticDivision/angstroms

  • This dataset is a document describing the Ctenophores of the Southern Ocean. It lists all the known species and with illustrated diagrams provides a guide to their taxonomic identification. The document is available for download as a pdf from the provided URL.

  • This dataset is a document describing the Chaetognaths of the Southern Ocean. The synonymy, diagnostic characters, geographical and bathymetric distribution of each species is given together with an illustration of body, head and a seminal vesicle, and a distribution map. The document is available for download as a pdf from the provided URL.

  • To quantify the dietary preferences and trophic level consumption of post-breeding adult female Antarctic fur seals (Arctocephalus gazella), we analysed the carbon:nitrogen composition of whiskers and blood samples from the females. Females were captured towards the end of the lactation period (March/April) and whiskers and a blood sample were collected at this time. Females were generally recaptured just prior to or after giving birth the following season and a further whisker and blood sample were collected at this time. Metadata for each individual include: Site, GLS ID, year, flipper tag number, season, sampling date, tissue type, whisker segment number, cumulative length along whisker of the segment, d15N, d13C, percentage N, percentage C and CN ratio.

  • To quantify the dietary preferences and trophic level consumption of post-breeding adult female Antarctic fur seals (Arctocephalus gazella), we analysed the carbon:nitrogen composition of whiskers and blood samples from the females. Females were captured towards the end of the lactation period (March/April) and whiskers and a blood sample were collected at this time. Females were generally recaptured just prior to or after giving birth the following season and a further whisker and blood sample were collected at this time. Metadata for each individual include: Site, GLS ID, year, flipper tag number, season, sampling date, tissue type, whisker segment number, cumulative length along whisker of the segment, d15N, d13C, percentage N, percentage C and CN ratio.

  • Adelie penguin breeding success records for Bechervaise Island, Mawson since 1990-91. Data include counts of occupied nests and chick counts when either 2/3 of the nests have creched or when all nests have creched. Breeding success values are calculated as the number of chicks per occupied nest. Breeding Success = the number of chicks raised to fledging per nest with eggs Breeding success is calculated from four different whole island counts: 1) the number of incubating nests (i.e. the number of nest with eggs) - 'incubating nest count' 2) the number of brooding nests (i.e. the number of nests brooding chicks) - 'brooding chick count' 3) the number of chicks present when 2/3 of the nests have creched their chicks - '2/3-creche count' 4) the number of chicks present when all the nests have creche their chicks - 'fully-creche count' Each colony on the island is manually counted by field observers, using 'counters', three times each. Counts within 10% of each other are used to average the number of nests or chicks for each colony and then in later calculations to determine breeding success. Incubating nest counts are conducted on or about 2nd December; Brooding chick counts are conducted on or about the 7th January; 2/3-creche counts on or about the 19th January; and Fully-creche chick counts on or about 26th January. Whole island 2/3-creche and fully-creche chick count dates are determined from calculating when 2/3 and all study nests in the census area (study colonies) have creche their chicks. This work was completed as part of ASAC Project 2205, Adelie penguin research and monitoring in support of the CCAMLR Ecosystem Monitoring Project. The fields in this dataset are: Year Breeding success Occupied nests

  • 1st Experiment 24/11/16 ************************************************************************************************ See 2016_11_24_Miseq_Sheet 1. Sanger Sequencing Plate #4 - 25mg of Tissue was extracted by AGRF. DNA was diluted to 5ng/ul. Samples were sanger sequenced with 16SAR (Palumbi) primer. If they failed, I used COI3 cocktail (Ivanova). FASTA sequences from Plate 4 are in the folder named Sanger Sequence FASTA Plate #4. Naming - Plate position, primer, sample ID. ie reater than A1-16S-AR_1952. 2. DNA and Tissue Pools of Plate 4 We wanted to explore the possibility of using a metabarcoding approach. For metabarcoding we re-examined specimens already identified from sanger sequences. We mixed DNA from many samples (n=16 or n=96) and did a single amplification (i.e. up to 96 DNA extractions processed in a single-tube marker amplification). We also took it a step further and tried blending a set amount of tissue from many fish specimens (n=16 or n=96) and did a single DNA extraction on the tissue mixes (i.e. a single DNA extraction and single tube amplification for up to 96 samples). See 2016_11_24_Miseq_Sheet for DNA and Tissue Pool mixes. 3. Miseq Run 16 samples were ran on a 250bp pe read. Each sample was amplified with 3 primer sets - COI (please note one dual labelled set was used), 12s and 16s (Primers listed on 2016_11_24_Miseq_Sheet). They were diluted 1:10 and illumina sequencing adaptors were added (please note I used same I7 and I5 per sample, so they had to be sorted on amplicon). 2016_11_24_fastq_files has the data from miseq. and 2016_11_24_merged_fastq_files has the merged files. For some unknown reason 16s tissue produced no data. 2nd Experiment 04/07/17 ************************************************************************************************* 1. DNA Extractions Plate #1, 2 and 3 - 25mg of Tisse was extracted by AGRF. DNA was diluted to 5ng/ul. We also used Plate #4 from experiment above. See Plate Layout for sample allocation. 2. Tissue and DNA Pools DNA pools were from Plate 1, 2, 3 and 4. Tissue Mixes were from Plate 2 and 4 only. We wanted to explore the possibility of using a metabarcoding approach. We mixed DNA from many samples (n=16 or n=96) and did a single amplification (i.e. up to 96 DNA extractions processed in a single-tube marker amplification). We also took it a step further and tried blending a set amount of tissue from many fish specimens (n=16 or n=96) and did a single DNA extraction on the tissue mixes (i.e. a single DNA extraction and single tube amplification for up to 96 samples). See plate layout for DNA and Tissue Pool mixes. 3. Miseq Run 577 samples were sequenced in a 250bp pe read. See 2017_07_04_Miseq Sheet. Plate 1, 2 3 and 4 were all sequenced with Leray Primers.(Please note I accidentally amplified the first half of plate one with one pair of dual labelled COI primers, index on miseq sheet). I also made a plate of tissue and DNA pools (see plate layout for DNA and Tissue Pool mixes) and amplified those with 4 primers (primer sequences on miseq sheet) COI (individual dual labelled primers, 1st round index are on miseq sheet) 12s Fish 16s Chordate NADH The last 4 samples with 12s were to add to database as there are no 12S sequences for those species on genbank. See PCR recipes for annealing temp and cycling etc I accidentally put the marker under sample name so the original sample ID was lost and miseq gave it a new name (name from miseq output) and then another new name from merged file. Finally I gave them a unique sample ID. See name file if you need more information. 2017_07_04 has the data from miseq. and 2017_07_04_merged_fastq_files has the merged files. Samples were clustered using zero radius OTU's. 4.Results See Results database. The spreadsheet has all of the possible name combinations from the run. It also contains the Haul ID and date, time, lat, long etc. There is a morph taxa ID which refers to what the observer has identified the fish and then there is Seq_Taxa_ID which is the sequencing result. There is also a list of primers that were used to identify the fish. 0 indicated that the primer wasnt used, 1 indicates it was. The second tab has all of the info for the samples that failed. *************************************************************************************************

  • This dataset contains the data from Voyage 7.2 1989-90 of the Aurora Australis. The observations were taken from around Heard Island between May and June 1990. The objective of the zooplankton program was to determine the composition, distribution and abundance of zooplankton with the Heard Island-Kerguelen area, thus providing information of food availability to planktivorous fish. Surveys of krill and other zooplankton were made to obtain species identity and abundance data, length and age. Euphausia valentini and Themisto gaudichaudi were found to be the dominant species in the region. Other major species included the euphausiid Thysanoessa, the copepod Rhincalanus gigas and chaetognaths of the genus Sagitta. This dataset is a subset of the full cruise.

  • This dataset is a document describing the Decapoda of the Southern Ocean. It lists all the known species and with illustrated diagrams provides a guide to their taxonomic identification. The document is available for download as a pdf from the provided URL.