Keyword

VERTICAL LOCATION > SEA FLOOR

20 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 20
  • A geomorphology map of the Australasian seafloor was created as a Geographic Information System layer for the study described in Torres, Leigh G., et al. "From exploitation to conservation: habitat models using whaling data predict distribution patterns and threat exposure of an endangered whale." Diversity and Distributions 19.9 (2013): 1138-1152. The geomorphology map was generated using parameters derived from the General Bathymetric Chart of the World (GEBCO 2008, http://www.gebco.net/), with 30 arc-second grid resolution. Geomorphology features were delineated manually with a consistent spatial resolution. Each feature was assigned a primary attribute of depth zone and a secondary attribute of morphological feature. The following feature classes are defined: shelf, slope, rise, plain, valley, trench, trough, basin, hills(s), mountains(s), ridges(s), plateau, seamount. Further information (methods, definitions and an illustration of the geomorphology map) is provided in Appendix S2 of the paper which is available for download (see related URLs).

  • Total Organic Carbon A 2 g homogenised wet sediment sub-sample from each core was weighed into a pre-combusted crucible and dried at 105 degrees C. The dried sample was reweighed before being analysed for total carbon by mass loss on ignition at 550 degrees C, the sample was placed in the muffle furnace for 4 hours. Samples 56698, 57062, 56837, 57058, and 580792 were analysed in triplicate to assess the reproducibility of the analytical procedure. (Total number of analyses was 117). - TOC - For the 107 samples: - Mean and SD: 3 plus or minus 4 % DMB, range: 0.16-15 %, n=107 - Considering the mean values for the 27 site locations: - Range: 0.33-14 % DMB, mean and SD: 3.3 plus or minus 3.7 % DMB, n=27 - Analytical uncertainty - Analytical precision: 5 samples analysed in triplicate: - RSD = 6 plus or minus 5% range 1-11%, n=5 - Site heterogeneity: reproducibility (RSD) of mean data from site replicate samples was 26% (mean, SD 15%, range 10-57%, n=27) - From the limited data on reproducibility summarised above, it can be concluded that site heterogeneity contributes most to the uncertainty of the TOC data for the site locations. - DMF - For the 107 samples: - Mean and SD: 0.57 plus or minus 0.23 %, range: 0.09-0.85, n=107 - Considering the mean values for the 27 site locations: - Range:0.17-0.83, mean and SD: 0.57 plus or minus 0.22, n=27 - Analytical uncertainty - Analytical precision: 5 samples analysed in triplicate: - RSD = 2 plus or minus 2% range 0.8-5%, n=5 - Site heterogeneity: reproducibility (RSD) of mean data from site replicate samples (mostly quadruplicates) was 10% (mean, SD 10%, range 1-37%, n=27) - From the limited data on reproducibility summarised above, it can be concluded that site heterogeneity contributes most to the uncertainty of the DMF data for the site locations. Collection of sediment cores Sediment for grain size and various chemical analysis were sampled using a core of PVC tubing (15cm long x 5cm diameter) pushed 10cm into the sediment. These cores were kept upright at all times to ensure the stratigraphy remained intact and frozen in the core tube at -20 degrees C. Grain size analysis The outer 5 mm edge of the core was removed with a scalpel blade and placed in a clean, dried preweighed beaker. The sample was weighed and placed in an oven at 45 degrees C to dry. Once dry the sample was reweighed and then sieved through a 2 mm sieve, any residual sediment in the beaker was weighed and the weight recorded. The less than 2 mm fraction and the greater than 2 mm fraction were separately collected and weighed. A 5 g sample of the less than 2 mm fraction was taken for grain size analysis which was carried out using the Mastersizer 2000 Particle Size Analyser by Associate Professor Damian Gore at the Department of Physical Geography, Macquarie University, Sydney.

  • Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks, 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125? hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison.

  • Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks, 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125? hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison.

  • Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks, 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125? hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison.

  • Untreated, macerated wastewater effluent has been discharged to the sea at Davis Station since 2005, when the old wastewater treatment infrastructure was removed. This environmental assessment was instigated to guide the choice of the most suitable wastewater treatment facility at Davis. The assessment will support decisions that enable Australia to meet the standards set for the discharge of wastewaters in Antarctica in national legislation (Waste Management Regulations of the Antarctic Treaty Environmental Protection Act - ATEP) and to meet international commitments (the Madrid Protocol) and to meet Australia's aspirations to be a leader in Antarctic environmental protection. The overall objective was to provide environmental information in support of an operational infrastructure project to upgrade wastewater treatment at Davis. This information is required to ensure that the upgrade satisfies national legislation (ATEP/Waste Management Regulations), international commitments (the Madrid Protocol) and maintain the AAD's status as an international leader in environmental management. The specific objectives were to: 1. Wastewater properties: Determine the properties of discharged wastewater (contaminant levels, toxicity, microbiological hazards) as the basis for recommendations on the required level of treatment and provide further consideration of what might constitute adequate dilution and dispersal for discharge to the nearshore marine environment 2. Dispersal and dilution characteristics of marine environment: Assess the dispersing characteristics of the immediate nearshore marine environment in the vicinity of Davis Station to determine whether conditions at the existing site of effluent discharge are adequate to meet the ATEP requirement of initial dilution and rapid dispersal. 3. Environmental impacts: Describe the nature and extent of impacts to the marine environment associated with present wastewater discharge practices at Davis and determine whether wastewater discharge practices have adversely affected the local environment. 4. Evaluate treatment options: Evaluate the different levels of treatment required to mitigate and/or prevent various environmental impacts and reduce environmental risks.

  • Untreated, macerated wastewater effluent has been discharged to the sea at Davis Station since 2005, when the old wastewater treatment infrastructure was removed. This environmental assessment was instigated to guide the choice of the most suitable wastewater treatment facility at Davis. The assessment will support decisions that enable Australia to meet the standards set for the discharge of wastewaters in Antarctica in national legislation (Waste Management Regulations of the Antarctic Treaty Environmental Protection Act - ATEP) and to meet international commitments (the Madrid Protocol) and to meet Australia's aspirations to be a leader in Antarctic environmental protection. The overall objective was to provide environmental information in support of an operational infrastructure project to upgrade wastewater treatment at Davis. This information is required to ensure that the upgrade satisfies national legislation (ATEP/Waste Management Regulations), international commitments (the Madrid Protocol) and maintain the AAD's status as an international leader in environmental management. The specific objectives were to: 1. Wastewater properties: Determine the properties of discharged wastewater (contaminant levels, toxicity, microbiological hazards) as the basis for recommendations on the required level of treatment and provide further consideration of what might constitute adequate dilution and dispersal for discharge to the nearshore marine environment 2. Dispersal and dilution characteristics of marine environment: Assess the dispersing characteristics of the immediate nearshore marine environment in the vicinity of Davis Station to determine whether conditions at the existing site of effluent discharge are adequate to meet the ATEP requirement of initial dilution and rapid dispersal. 3. Environmental impacts: Describe the nature and extent of impacts to the marine environment associated with present wastewater discharge practices at Davis and determine whether wastewater discharge practices have adversely affected the local environment. 4. Evaluate treatment options: Evaluate the different levels of treatment required to mitigate and/or prevent various environmental impacts and reduce environmental risks.

  • Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks, 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125 hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison.

  • Preliminary data set contains details of cores processed (eg. sample name/interval, dry weights, reactions, notes) and the methodology used. The future data set will document diatoms observed and counted for each sample. This project also has links to ASAC project 1044 (ASAC_1044), the Wilkes Land Glacial History (WEGA) project. WEGA cores from both the continental shelf (PC7,11,12) and slope (PC19, 20, 21) region have been silica-selectively processed for their diatom content (see methodology file for details). The slides are mounted for quantitative assessment. Details of the cores that have been prepared are listed in the file WEGA_cores.csv in the downloadable dataset. Additional silica-selective slides of the surface sediments on the continental shelf were processed for quantitative assessment. Details of the samples and their locations are listed in the file sediment_samples.csv in the downloadable dataset. There have been no publications from the prepared slides as of the 15/04/02. An unpublished Honours Thesis uses limited diatom counts from slides prepared from PC 12. (Ms J. Erbs 2001). Title to be forthcoming. Any further enquiries referring to sample availability, curation, additional samples or publications arising from this material should be directed to Dr L. Armand. The fields in this dataset are: dry weight (gm) Sol A* reaction HCL reaction final dilution notes cm depth bottom depth latitude longitude core depth

  • Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks, 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125? hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison.