Keyword

OCEAN ACIDIFICATION

24 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 24
  • General description: The associated file contains sediment pigment data from the antFOCE project 4127. Units: all pigment data in ug/g, 0 = below detection limit of HPLC. Sample collection details: At the start and end of the antFOCE experiment, four sediment core samples were taken from inside and outside each chamber or open plot by divers. The top 1 cm of the cores was then removed and placed in the dark, first at -20ºC for 2 hours, then at -80ºC until analysis at the Australian Antarctic division. Pigment analysis Frozen samples were transported under liquid N2 to a freeze drier (Dynavac, model FD-5), in pre-chilled flasks with a small amount of liquid N2 added. Custom made plumbing fitted to the freeze drier enabled samples to be purged with N2 to prevent photo-oxidation up until solvent extraction. Prior to pigment extraction five 2 g stainless steel ball bearings were added to homogenise the freeze dried sediment. The samples were bead beaten for 1 minute (Biospec products). Subsamples (~0.05 g) were immediately transferred to cryotubes with 700 µl of dimethylformamide (DMF) for two hours. Samples were kept at -80ºC and under a safe light (IFORD 902) at all times. All pigment concentrations are standardised to sediment weight. Pigments were extracted with dimethylformamide (DMF 700 µl) over a two hour period at -20ºC. Zirconia beads, and 100 µl of Apo 8 and an internal standard were added to each sub-sample. After a two hour extraction, sub-samples were bead beaten for 20 seconds and then placed in a centrifuge with filter cartridge inserts for 14 minutes at 2500 rpm at -9ºC to separate the solvent from the sediment. The supernatant was transferred into to a vial and placed in a precooled rpHPLC autosampler. The rpHPLC system used is described in Hodgson et al. (1997). Pigment detection was at 435, 470 and 665 nm for all chlorophylls and carotenoids, with spectra from 300–700 nm being collected every 0.2 seconds. Pigment identification was carried out using a combination of rpHPLC and normal phase HPLC retention times, light absorbance spectra and reference standards (see Hodgson et al., 1997). These techniques assisted in the accurate identification of pigments and their derivatives to a molecular level and enabled several pigment derivatives to be analysed. The HPLC was previously calibrated with authentic standards and protocols outlined in SCOR (1988). Data set headers: (A)Treatment: Example code 4127_SOP7_6-1-15_PlotB_R1, = prodject code_Standard Operating Procedure(SOP) used to collect samples(see antFOCE parent file)_ Date_Chamber/plot(A,B,C,D)_replicate core within Chamber/plot(1,2,3) (B) BB carot= BB caroten, type of pigment detected by HPLC. See Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more details. (C) Chl c1 = Chlorophyll derivatives see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (D) Chl c2 = Chlorophyll derivatives see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (E) Chl c3 = Chlorophyll derivative see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (F) Chla = Chlorophyll a see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (G) Ddx =Diadinoxanthin see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information (H) dtx = Diatoxanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information (I) epi = Chlorophyll epimer pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (j) Fuc = Fucoxanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (k) Gyro2 = Gyroxanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (L) Pras = Prasanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (m) Zea = Zeaxanthin pigment. see Wright, S.W., Jeffrey, S.W. and Mantoura, R.F.C. eds., 2005. Phytoplankton pigments in oceanography: guidelines to modern methods. Unesco Pub for more information. (n) Date = Samples taken at the start of antFOCE experiment or at the end (o) chamber = The antFOCE chamber (A,B,C,D) (p) Treatment = The associated pH level in chambers (Acidified ~7.8, Control ~8.2) (Q) Position = Samples were taken within chambers and outside chambers (outside, inside) (r) rep= Subsamples were taken within each chamber/position (R1=replicate one, R1-R4) Spatial coordinates: 66.311500 S, 110.514216 E Dates: between 1/12/2014 and 1/3/2015 Timezone:UTC+11

  • Metadata record AAS_4127_antFOCE_HardSubstrateFauna contains all data sets relating to the fauna sampled from hard substrates during the antFOCE experiment, including recruitment tiles, artificial substrate units and biofilm slides. Refer to antFOCE report section 4.5 for deployment, sampling and on-station analysis details. https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127 Background The antFOCE experimental system was deployed in O’Brien Bay, approximately 5 kilometres south of Casey station, East Antarctica, in the austral summer of 2014/15. Surface and sub-surface (in water below the sea ice) infrastructure allowed controlled manipulation of seawater pH levels (reduced by 0.4 pH units below ambient) in 2 chambers placed on the sea floor over natural benthic communities. Two control chambers (no pH manipulation) and two open plots (no chambers, no pH manipulation) were also sampled to compare to the pH manipulated (acidified) treatment chambers. Details of the antFOCE experiment can be found in the report – “antFOCE 2014/15 – Experimental System, Deployment, Sampling and Analysis”. This report and a diagram indicating how the various antFOCE data sets relate to each other are available at: https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127

  • Refer to antFOCE report section 2.3 for deployment, sampling and analysis details. https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127 The download file contains an Excel workbook with a series of data spreadsheets - one for each of the Onset Hoboware Tidbit v2 (UTBI-001) temperature loggers that were attached to the outside of various pieces of the underwater experimental infrastructure across the antFOCE site. A Notes spreadsheet is also included with information relevant to the data. Background The antFOCE experimental system was deployed in O'Brien Bay, approximately 5 kilometres south of Casey station, East Antarctica, in the austral summer of 2014/15. Surface and sub-surface (in water below the sea ice) infrastructure allowed controlled manipulation of seawater pH levels (reduced by 0.4 pH units below ambient) in 2 chambers placed on the sea floor over natural benthic communities. Two control chambers (no pH manipulation) and two open plots (no chambers, no pH manipulation) were also sampled to compare to the pH manipulated (acidified) treatment chambers. Details of the antFOCE experiment can be found in the report – "antFOCE 2014/15 – Experimental System, Deployment, Sampling and Analysis". This report and a diagram indicating how the various antFOCE data sets relate to each other are available at: https://data.aad.gov.au/metadata/AAS_4127_antFOCE_Project4127

  • This data set was collected from a ocean acidification minicosm experiment performed at Davis Station, Antarctica during the 2014/15 summer season. It includes: - description of methods for all data collection and analyses. - flow cytometry counts; autotrophic cells, heterotrophic nanoflagellates, and prokaryotes

  • Parent node for data sets for the Antarctic Free Ocean Carbon Dioxide Enrichment experiment (antFOCE), AAS project 4127. Project Summary: Currently, a quarter of the CO2 we emit is absorbed by the ocean. CO2 absorption in seawater changes its chemistry – reducing ocean pH (raising its acidity) – which has significant impacts on biological processes and serious implications for the resilience of marine ecosystems. As CO2 is more soluble in cold water we expect polar ecosystems to bear the heaviest burden of this 'ocean acidification'. We will perform the first in situ polar CO2 enrichment experiment to determine the likely impacts of ocean acidification on Southern Ocean sea-floor communities under increasing CO2 emissions.

  • We use RNA sequencing to investigate which genetic/physiological pathways in Antarctic krill are affected by increased CO2 levels. We carried out larval CO2 exposure experiments in March 2012 at the AAD aquarium. Two developmental stages were used (Calyptopis I and Furcilia V) and three CO2 levels (control, 1000 and 2000 ppm). These were short term experiments (2 days) - since initial longer experiments starting with fertilized eggs resulted in differences in developmental stages between treatments and control which could confound the data. RNA was extracted from larvae and high-throughput RNA sequencing (RNA-seq) was carried out on 6 samples (2 stages * 3 treatments). Sequencing was carried out on an Illumina sequencer (Genome Analyzer II). We collected ~ 60 million sequence reads per sample (Data in FASTA format each read gives 100 base pairs of sequence), so a total of ~360 million reads (36 billion bp of data).

  • Three experiments were performed at Davis Station, East Antarctica, 77 degrees 58' E, 68 degrees 35' S to determine the effects of ocean acidification on natural assemblages of Antarctica marine microbes (bacteria, viruses, phytoplankton and protozoa). Incubation tanks (6 * 650 L minicosms) were filled on the 30/12/08, 20/01/09 and 09/02/09 with sea water that was filtered through 200 microns mesh to remove metazoan grazers. The pH of each tank was adjusted by adding calculated amounts of CO2 saturated sea water. Treatment concentrations were maintained daily and microbial communities incubated for up to 12 days. The three experiments spanned early-, mid- and late-summer, with CO2 treatments ranging from pre-industrial to post-2100. The Excel spreadsheet contains 3 tabs: Experiment 1 - Early Summer Experiment 2 - Mid Summer Experiment 3 - Late Summer Within each tab there are measurements for: pCO2, dissolved inorganic carbon, Pmax, alpha, Ek, chl a, gross primary production (14C), bacterial production (14C), cell-specific bacterial productivity, bacterial abundance, dissolved organic carbon, particulate organic carbon, heterotrophic nanoflagellates, nitrate+nitrite, phosphate, silicate, ammonium, net community production, respiration, gross primary production (O2), photosynthesis:respiration ratios. Units for each measurement supplied within. Please see the following paper for interpretation of this data: Westwood, K.J., Thomson, P.G., van den Enden, R., Maher, L., Wright, S.W., Davidson, A.T. (2018). Ocean acidification impacts primary and bacterial production in Antarctic coastal waters during austral summer. Journal of Experimental Marine Biology and Ecology 498: 46-60, doi: 10.1016/j.jembe.2017.11.003.

  • Metadata record AAS_4127_antFOCE_EnvironmentalData contains seafloor Ambient Light and ambient Seawater Temperature data sets collected at the antFOCE site during the experiment. Ambient Light data was collected using Photosynthetically Active Radiation sensors (Odyssey Dataflow 392 photo diode light meters) distributed around the antFOCE site as well as several inside the experimental chambers and open plots. Seawater Temperature data were collected using Onset Hoboware Tidbit v2 (UTBI-001) temperature loggers attached to the outside of various pieces of the underwater experimental infrastructure across the antFOCE site. Refer to antFOCE report section 2.3 for deployment, sampling and on-station analysis details. https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127 Background The antFOCE experimental system was deployed in O'Brien Bay, approximately 5 kilometres south of Casey station, East Antarctica, in the austral summer of 2014/15. Surface and sub-surface (in water below the sea ice) infrastructure allowed controlled manipulation of seawater pH levels (reduced by 0.4 pH units below ambient) in 2 chambers placed on the sea floor over natural benthic communities. Two control chambers (no pH manipulation) and two open plots (no chambers, no pH manipulation) were also sampled to compare to the pH manipulated (acidified) treatment chambers. Details of the antFOCE experiment can be found in the report – "antFOCE 2014/15 – Experimental System, Deployment, Sampling and Analysis". This report and a diagram indicating how the various antFOCE data sets relate to each other are available at: https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127

  • Refer to antFOCE report section 4.4.1 for deployment, sampling and analysis details. https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127 The download file contains an Excel workbook with 2 data spreadsheets - one for the greater than 1mm fraction and one for the 0.5mm to 1mm fraction of the macrofauna - and a third of notes relevant to the data. The data are the total number of each organism collected from sediment cores taken in and adjacent to chambers or open plots during the antFOCE experiment. Analysis methods are detailed in the Notes spreadsheet. Background The antFOCE experimental system was deployed in O’Brien Bay, approximately 5 kilometres south of Casey station, East Antarctica, in the austral summer of 2014/15. Surface and sub-surface (in water below the sea ice) infrastructure allowed controlled manipulation of seawater pH levels (reduced by 0.4 pH units below ambient) in 2 chambers placed on the sea floor over natural benthic communities. Two control chambers (no pH manipulation) and two open plots (no chambers, no pH manipulation) were also sampled to compare to the pH manipulated (acidified) treatment chambers. Details of the antFOCE experiment can be found in the report – “antFOCE 2014/15 – Experimental System, Deployment, Sampling and Analysis”. This report and a diagram indicating how the various antFOCE data sets relate to each other are available at: https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127

  • Refer to antFOCE report section 4.5.2 for deployment, sampling and analysis details. https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127 The download file contains an Excel workbook with one data spreadsheet and one of notes relevant to the data. The data are the total number of each organism collected from artificial substrate units (plastic pot scourers) deployed in chambers or open plots during the antFOCE experiment (Data = Number of Individuals). Analysis methods are detailed in the Notes spreadsheet. Background The antFOCE experimental system was deployed in O’Brien Bay, approximately 5 kilometres south of Casey station, East Antarctica, in the austral summer of 2014/15. Surface and sub-surface (in water below the sea ice) infrastructure allowed controlled manipulation of seawater pH levels (reduced by 0.4 pH units below ambient) in 2 chambers placed on the sea floor over natural benthic communities. Two control chambers (no pH manipulation) and two open plots (no chambers, no pH manipulation) were also sampled to compare to the pH manipulated (acidified) treatment chambers. Details of the antFOCE experiment can be found in the report – “antFOCE 2014/15 – Experimental System, Deployment, Sampling and Analysis”. This report and a diagram indicating how the various antFOCE data sets relate to each other are available at: https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127