From 1 - 10 / 11
  • The concentration of heavy metals in seawater at four sites around Casey was determined via Diffusive Gradients in Thin films (DGT) loggers attached to experimental mesocosms suspended below the sea ice. Data are the concentration of heavy metals in micrograms per litre (ug/l), equivalent to parts per billion (ppb)/litre Two loggers were attached to each mesocosm (perforated 20 litre food buckets) at each site; one at the top and one at the bottom of each mesocosm. Mesocosms were suspended two to three metres below the bottom edge of the sea ice through a 1 metre diameter hole and were periodically raised to the surface for short periods (~1 hour). This experiment was part of the short-term biomonitoring program for the Thala Valley Tip Clean-up at Casey during summer 2003/04. During Runs 1 and 2 of the experiment mesocosms were deployed at Brown Bay Inner (S66 16.811 E110 32.475), Brown Bay Outer (S66 16.811 E110 32.526), McGrady Cove (S66 16.556 E110 34.392) and O'Brien Bay 1 (S66 18.730 E110 30.810). In Run 3 mesocosm were deployed in open water with no sea ice covering at Brown Bay Inner (S66 16.807 E110 32.556), Brown Bay Outer (S66 16.805 E110 32.607), McGrady Cove (S66 16.520 E110 34.257) and O'Brien Bay (S66 17.607 E110 31.247). These data were collected as part of ASAC project 2201 (ASAC_2201 - Natural variability and human induced change in Antarctic nearshore marine benthic communities). See also other metadata records by Glenn Johnstone for related information.

  • The heavy metal content of whole Paramoera walkeri (Eusiridae, Amphipoda) were measured from specimens collected and deployed in experimental mesocosms around Casey station during the summer of 2003/04. Data are the parts per million (ppm) concentrations of 45 heavy metals measured via acid digestion and ICP-MS analysis. P.walkeri were collected from an intertidal area on the northern side of O'Brien Bay and deployed in mesocosms (perforated sample jars housed within perforated 20 litre food buckets) suspended approximately three metres below the sea ice at four sites; two potentially impacted sites in Brown Bay and two control sites, O'Brien Bay and McGrady Cove. The experiment was run on three occasions during the summer each lasting two weeks. These data were collected as part of ASAC project 2201 (ASAC_2201 - Natural variability and human induced change in Antarctic nearshore marine benthic communities). See also other metadata records by Glenn Johnstone for related information.

  • 1. In situ chlorophyll fluorescence measurements using pulse amplitude technique (PAM) of macroalga Desmarestia menziesii, assessing adaptation to high light exposure after sea ice breakout, and impact of Thala Valley tip wastes. 2. In situ chlorophyll fluorescence measurements using pulse amplitude technique (PAM) of sediment diatom material assessing adaptation to high light exposure after sea ice breakout, and impact of Thala Valley tip wastes. 3. In situ chlorophyll fluorescence measurements using pulse amplitude technique (PAM) of sponge Latrunculia decipiens assessing adaptation to high light exposure after sea ice breakout. 4. Ecotoxicological experiments where Desmarestia menziesii was exposed to copper in indoor aquaria, aim to determine EC50, NOEC, LOEC for copper. 5. Field collections of various macroalgae for stable isotope analysis: for determination of physiological mechanisms. 6. Field collections of sponge and diatom material for pigment analysis.

  • This data set describes the concentrations of copper, lead and iron in the calcareous tests of heart urchins that were exposed to spiked sediments for 60 days. Porewater is the water extracted from between sand grains. Filtered porewater has been filtered. DGT stands for Diffuse Gel Transfer. The HCl extraction listed in one of the excel spreadsheets is an extraction from the actual sediment. The fields in this dataset are: Isotope Concentration Porewater Filtered Porewater DGT Porewater

  • These data sets describe the toxicity of lead, coppyer, zinc and cadmium spiked seawater to the juveniles of Abatus ingens and Abatus nimrodi. Metals were tested separately over exposure periods of 96 and 240 hours. The experimental endpoint was mortality as defined by cessation of observable movement. The coding system for the data files is J(juvenile)_An (Abatus nimrodi) or Ai (Abatus ingens) - Metal name_Dates of the experiment_ the period of the observation (96 hour or 240 hour). This work falls under the umbrella project ASAC_2201. The fields in this dataset are: Species Toxicant Date Replicate Concentration Moving pH Salinity Dissolved Oxygen

  • Full title: Diatom and associated data for a manipulative field experiment which translocated control and contaminated sediments between locations within the Windmill Islands, Antarctica. A manipulative field experiment was performed to assess the effects of heavy metals and petroleum hydrocarbons on benthic diatom communities in the Windmill Islands. Three treatments were used (control, metal contaminated, and petroleum hydrocarbon contaminated), with replicates of each treatment deployed at three locations (Sparkes Bay, Brown Bay and O'Brien Bay). The datasets associated with this experiment include the concentrations of metals within the sediments as well as diatom data (raw counts, and the relative abundance of benthic species). This work was completed as part of ASAC project 1130 (ASAC_1130) and project 2201 (ASAC_2201). Public summary from project 1130: Algal mats grow on sea floor in most shallow marine environments. They are thought to contribute more than half of the total primary production in many of these areas, making them a critical food source for invertebrates and some fish. We will establish how important they are in Antarctic marine environments and determine the effects of local sewerage and tip-site pollution. We will also investigate the impact on the algal mats of the additional UV radiation which results from the ozone hole. Public summary from project 2201: As a signatory to the Protocol on Environmental Protection to the Antarctic Treaty Australia is committed to comprehensive protection of the Antarctic environment. This protocol requires that activities in the Antarctic shall be planned and conducted on the basis of information sufficient to make prior assessments of, and informed judgements about, their possible impacts on the Antarctic environment. Most of our activities in the Antarctic occur along the narrow fringe of ice-free rock adjacent to the sea and many of our activities have the potential to cause environmental harm to marine life. The Antarctic seas support the most complex and biologically diverse plant and animal communities of the region. However, very little is known about them and there is certainly not sufficient known to make informed judgements about possible environmental impacts. The animals and plants of the sea-bed are widely accepted as being the most appropriate part of the marine ecosystem for indicating disturbance caused by local sources. Attached sea-bed organisms have a fixed spatial relationship with a given place so they must either endure conditions or die. Once lost from a site recolonisation takes some time, as a consequence the structure of sea-bed communities reflect not only present conditions but they can also integrate conditions in the past. In contrast, fish and planktonic organisms can move freely so their site of capture does not indicate a long residence time at that location. Because sea-bed communities are particularly diverse they contain species with widely differing life strategies, as a result different species can have very different levels of tolerance to stress; this leads to a range of subtle changes in community structure as a response to gradually increasing disturbance, rather than an all or nothing response. This project will examine sea-bed communities near our stations to determine how seriously they are affected by human activities. This information will be used to set priorities for improving operational procedures to reduce the risk of further environmental damage. The fields in this dataset are: Species Arsenic Cadmium Copper Lead Silver Zinc Concentration Location Treatment Abundance Benthic Site

  • This data set describes the toxicity of marine sediment spiked with contaminated soil from Thala Valley tip site at Casey. The temperate heart urchin species Echinocardium cordatum was exposed for up to 10 days with daily observations of the degree of burial of the animals. The data for this project was collected as part of the umbrella project ASAC_2201. The fields for this dataset are: Date Time Urchin Buried Alive Salinity Dissolved Oxygen pH Temperature

  • Full title: Diatom and associated data for a manipulative field experiment examining the effects of heavy metal and petroleum hydrocarbon contamination on benthic diatom communities in the Windmill Islands, Antarctica. A manipulative field experiment was performed to assess the effects of heavy metals and petroleum hydrocarbons on benthic diatom communities in the Windmill Islands. Three treatments were used (control, metal contaminated, and petroleum hydrocarbon contaminated), with replicates of each treatment deployed at three locations (Sparkes Bay, Brown Bay and O'Brien Bay). The datasets associated with this experiment include the concentrations of metals and hydrocarbons within samples, as well as diatom data (raw counts, and the relative abundance of benthic species). This work was completed as part of ASAC project 1130 (ASAC_1130) and project 2201 (ASAC_2201). Public summary from project 1130: Algal mats grow on sea floor in most shallow marine environments. They are thought to contribute more than half of the total primary production in many of these areas, making them a critical food source for invertebrates and some fish. We will establish how important they are in Antarctic marine environments and determine the effects of local sewerage and tip site pollution. We will also investigate the impact on the algal mats of the additional UV radiation which results from the ozone hole. Public summary from project 2201: As a signatory to the Protocol on Environmental Protection to the Antarctic Treaty Australia is committed to comprehensive protection of the Antarctic environment. This protocol requires that activities in the Antarctic shall be planned and conducted on the basis of information sufficient to make prior assessments of, and informed judgements about, their possible impacts on the Antarctic environment. Most of our activities in the Antarctic occur along the narrow fringe of ice-free rock adjacent to the sea and many of our activities have the potential to cause environmental harm to marine life. The Antarctic seas support the most complex and biologically diverse plant and animal communities of the region. However, very little is known about them and there is certainly not sufficient known to make informed judgements about possible environmental impacts. The animals and plants of the sea-bed are widely accepted as being the most appropriate part of the marine ecosystem for indicating disturbance caused by local sources. Attached sea-bed organisms have a fixed spatial relationship with a given place so they must either endure conditions or die. Once lost from a site recolonisation takes some time, as a consequence the structure of sea-bed communities reflect not only present conditions but they can also integrate conditions in the past. In contrast, fish and planktonic organisms can move freely so their site of capture does not indicate a long residence time at that location. Because sea-bed communities are particularly diverse they contain species with widely differing life strategies, as a result different species can have very different levels of tolerance to stress; this leads to a range of subtle changes in community structure as a response to gradually increasing disturbance, rather than an all or nothing response. This project will examine sea-bed communities near our stations to determine how seriously they are affected by human activities. This information will be used to set priorities for improving operational procedures to reduce the risk of further environmental damage. The fields in this dataset are: Species Site Abundance Treatment Type Antimony Arsenic Cadmium Chromium Copper Iron Lead Manganese Mercury Nickel Silver Tin Zinc Special Antarctic Blend Lube

  • Marine soft-sediment assemblages were sampled from shallow (5 - 35m) nearshore regions around Casey Station, Windmill Islands, East Antarctica in late summer (Feb-March) 1997, using a van-Veen grab (surface area 20 x 25 cm). Samples were sieved through a 1 mm mesh and sorted to species where possible. A hierarchical, spatially nested sampling design was used with locations (km's apart), sites (100s of metres apart), and plots (10s of m). Two potentially impacted, polluted locations (adjacent to a sewage outfall and an old garbage tip) were compared with two control locations. Data was analysed using both multivariate and univariate statistical methods. Significant differences in assemblages were found between locations and between sites within locations. Significant differences in the abundances of taxa at several taxonomic levels (species, family, order, phylum) were found at all three spatial scales. Significant differences were also detected between the polluted and control locations. Compared with other Antarctic locations, the assemblages were dominated by crustaceans (90 to 97 % of individuals) and there was a paucity of polychaete fauna at the locations sampled. This study represents the first description of benthic assemblages from this region. A total of 70 samples are included in this data set. Also links to ASAC 1100. The fields in this dataset are: Location Site Plot/replicate Weight Volume Species

  • The effects of hyrdocarbon and heavy metal contamination of marine sediments on recruitment of soft-sediment assemblages were examined in a field experiment at Casey Station, East Antarctica. Three locations were used, a polluted bay adjacent to an old disused tip site (Brown Bay) and two control locations (O'Brien Bay and Sparkes Bay). At each location three types of defaunated sediment (hydrocarbon treated, heavy metal treated and control) were placed at approximately 15 m depth and left in place for 3 months, from December to February. Sediments were artificially contaminated with hydrocarbons and metals at concentrations which were representative of levels found in sediments at contaminated sites around Casey Station. There were large differences in recruitment between the three locations and significant differences between the control and contaminated sediment. Sediments in the experiment were also examined for evidence of degradation and attenuation of hydrocarbons and heavy metals. A total of 104 recruitment samples were collected. Samples were sieved at 500 micro m and sorted mainly to species. Other work to arise from this experiment includes examination of the effects on diatom communities and microbial communities. Data includes fauna, metals and hydrocarbon concentrations in experiment. Pre-deployment concentrations (before experiment was deployed in water) are indicated as 'pre-deployment'. Concentrations of contaminants in sediments surrounding the experiment (within several metres) are indicated as 'surrounding'. This project also links to ASAC 1100. The fields in this dataset are: Location Site Treatment (tmt) Site and replicate Species Toxicity Arsenic Cadmium Copper Lead Silver Zinc Special Antarctic Blend Fuel (SAB) Lube TPH