From 1 - 3 / 3
  • This indicator is no longer maintained, and is considered OBSOLETE. INDICATOR DEFINITION The fecundity (pupping rates) of female fur seals and the growth rates of their pups relative to changes in sea surface temperatures (local primary production) in the vicinity of Macquarie Island. TYPE OF INDICATOR There are three types of indicators used in this report: 1.Describes the CONDITION of important elements of a system; 2.Show the extent of the major PRESSURES exerted on a system; 3.Determine RESPONSES to either condition or changes in the condition of a system. This indicator is one of: CONDITION RATIONALE FOR INDICATOR SELECTION A highly negative correlation has been detected between sea surface temperatures in the vicinity of Macquarie Island and fur seal fecundity and pup growth. A dataset of over ten years has shown that autumn sea-surface temperatures are highly negatively correlated with female fecundity in the following breeding season. Rather than the reproductive success in terms of fecundity and pup growth being seen simply as a correlate of SST and presumably ocean productivity, the measure is much more than this. What the dataset from the Macquarie Island fur seal populations is rather more unique, in that they indicate how environmental variability effects the reproductive success of animals at annual and lifetime scales. This is especially important as we can now show what impacts environmental/climatic phenomena such as the Antarctic Circumpolar Wave, and global warming will have on fur seals, and how changes in the environment may impact on the viability of populations. In this situation, the data clearly suggest that warmer ocean temperatures significantly effect the reproductive success of fur seals. Sustained warmer temperatures would therefore impose demographic constraints on populations. DESIGN AND STRATEGY FOR INDICATOR MONITORING PROGRAM Spatial scale: SST data are obtained from a 1 degree square just north of the island that represents the region in which most females obtain food throughout their lactation period. Frequency: Data on the reproductive success of fur seals is to be collected annually. Measurement technique: Each breeding season (November-January), the reproductive success of tagged females is monitored, including their pupping success, and the growth rates of their pups. RESEARCH ISSUES LINKS TO OTHER INDICATORS

  • From the abstract of the referenced paper: One hundred and sixty four plastic particles (mean length 4.1 mm) recovered from the scats of fur seals (Arctocephalus spp.) on Macquarie Island were examined. Electron micrographs of 41 of the plastic particles showed that none could be identified as plastic pellet feedstock from their shapes. Commonly, such pellets are cylindrical and spherical. Instead, all the 164 plastic particles from the seal scats were angular particles of 7 colors (feedstock particles are normally opaque or white) and could be classified into 2 categories: i) fragmented along crystal lines and likely to be the result of UV breakdown; and ii) worn by abrasion (where striations were clearly visible) into irregular shapes with rounded corners. White, brown, green, yellow and blue were the most common colors. In composition, they came from 5 polymer groups; polyethylene 93%, polypropylene 4%, poly(1-Cl-1-butenylene) polychloroprene 2%, melamine-urea (phenol) (formaldehyde) resin 0.5%, and cellulose (rope fiber) 0.5%. The larger groups are buoyant with a specific gravity less than that of seawater. These small plastic particles are formed from the breakdown of larger particles (fragments). Their origin seems to be from the breakdown of user plastics washed ashore and ground down on cobbled beaches. Certainly most particles (70%) had attained their final form by active abrasion. It is hypothesized that the plastic particles were washed out to sea and then selected by size and consumed by individuals of a pelagic fish species, Electrona subaspera, who in turn were consumed by the fur seals. Thus, the particles were accumulated both by the fish and the seals in the usual process of their feeding. The download file contains a pdf of the paper listed in the reference section below, as well as 48 scanning electron micrograph images of plastics recovered from fur seal scats.

  • Antarctic Fur Seals from Heard Island fed mainly on fish, but the prey species changed both seasonally and inter-annually. The majority of prey were pelagic myctophids characteristic of deep oceanic water, and were generally taken in autumn and winter. The only other fish taken in significant numbers was Champsocephalus gunnari which was mostly taken from late winter through early autumn when it was co-dominant in the diet with the Krefftichthys anderssoni. Males and females foraged in different localities and in different parts of the water column. Males foraged mainly to the south of Heard Island in winter usually diving deep by day, feeding on scattering layers. In summer males also fed on the shelf, presumably to the north and east of Heard Island on K. anderssoni at shallow depths primarily at night. Although diet studies provided little evidence of feeding on crustaceans, diving data indicate that some males may travel to Antarctic waters in winter to feed on krill. The fields in this dataset are: Months Species Scats Time foraging Number of Dives Time Submerged (minutes) Mean Dive Duration (minutes) Maximum Depth (metres)