From 1 - 10 / 13
  • Metadata record for data from ASAC Project 1251 See the link below for public details on this project. ---- Public Summary from Project ---- The aim of this study is to develop spatial GIS models of fur seal foraging density over the Kerguelen Plateau that will enable a rapid assessment method for identifying areas of high conservation value for Marine Protected Area planning and management. These models will be based on data on fur seal foraging densities in the HIMI region, and oceanographic data on bathymetry, sea-surface temperature and ocean colour (primary productivity). From the abstract of the referenced paper: We investigated the spatial and temporal distribution of foraging effort by lactating Antarctic fur seals Arctocephalus gazella at Heard Island using satellite telemetry and time-depth recorders. Two principal diving types were identified: 'deep' dives averaging 48.6 m, and 'shallow' dives averaging 8.6 m. Discriminant function analyses were used to assign dives based on their depth and duration. Generalised linear mixed-effects models of night dives (greater than 80% of all dives) indicated both spatial and temporal effects on the distribution of deep and shallow dives. Deep dives were more common in the deeper shelf waters of the Kerguelen Plateau, and these dives predominantly occurred after sunset and before sunrise. In contrast, shallow dives were more common in slope waters on the southeastern margin of the Kerguelen Plateau in the hours either side of local midnight. We suggest that these 2 distinct diving types reflect the targeting of channichthyid (deep dives) and myctophid (shallow dives ) fish, and are indicative of spatial and temporal differences in the availability of these 2 important prey groups. We also identified 3 distinct behavioural dive groups (based on multidimensional scaling of 19 diving and foraging trip parameters) that also differed in their spatial distribution and in their relative importance of deep and shallow dives. The present study provides some of the first evidence that diving strategies are not only influenced by where foraging takes place, but also when. The fields in the campaign_41_tracks.csv file are: campaign_id (the campaign identifier: aadc_campaign_41) animal_id (the identifier of the individual animal) scientific_name (scientific name: Arctocephalus gazella) ptt_id (the identifier of the PTT device on the animal. Note that individual PTT devices were deployed multiple times on different animals) deployment_location (the location of deployment: Spit Bay, Heard Island)) deployment_longitude (longitude of deployment location) deployment_latitude (latitude of deployment location) observation_date (the date of observation, in ISO8601 format yyyy-mm-ddTHH:MM:SSZ. This information is also separated into the year, month, day, etc components) observation_date_year (the year of the observation date) observation_date_month (the month of the observation date) observation_date_day (the day of the observation date) observation_date_hour (the hour of the observation date) observation_date_minute (the minute of the observation date) observation_date_second (the second of the observation date) observation_date_time_zone (the time zone of the observation date) latitude (the latitude of the observed position, in decimal degrees) longitude (the longitude of the observed position, in decimal degrees) location_class (the Argos location class of the observed position: one of (in increasing order of accuracy) B,A,0,1,2,3) trip (the trip number of the animal) at_sea (whether the observed position occurred at sea) complete (whether the complete trip was recorded) The fields in the campaign_41_supplementary.csv file are: animal_id (the identifier of the individual animal) behavioural_dive_group (1 = deep; 2 = shallow-active; 3 = shallow) departure_date (date of departure of the animal on the trip) departure_mass (mass of the animal on departure, in kg) standard_length (standard length of the animal, in cm) trip_duration (duration of the trip, in days) dive_rate (dives per hour) night_dive_rate (dives per hour) mean_dive_duration (in seconds) proportion_time_submerged proportion_night_time_submerged proportion_dives_in_bouts mean_number_dives_per_bout proportion_dives_at_night vertical_depth_travelled_per_hr_of_night (in m) proportion_vertical_depth_dived_at_night vertical_depth_travelled_per_day (in m) mean_dive_depth (in m) mean_depth_deep_dives (in m) mean_depth_shallow_dives (in m) proportion_night_shallow_dive_duration maximum_distance (in km) heading (in degrees)

  • The populations of fur seals on Australia's two subantarctic islands were exterminated by uncontrolled sealing in the 19th century. Only in the latter half of the 20th century have populations commenced recovering. This project provides key information on the status and trends of recovering fur seal populations in the Southern Ocean, including information on the distribution of foraging effort, food and energy requirements, oceanographic determinants of demographic performance, ecological interactions with commercial fisheries, the extent, trends, processes and implications of hybridisation at Macquarie Island, and the status and trends in numbers of the threatened subantarctic fur seal. This dataset represents ARGOS tracking data of fur seals from Macquarie Island during 1997-1999. The tracking data are comprised of 28 data profiles. Taken from the abstract of the referenced paper: Antarctic Arctocephalus gazella and subantarctic Arctocephalus tropicalis fur seals breed sympatrically at Macquarie Island. The two species have different lactation strategies, the former rearing its pup in 4 months and the latter taking 10 months. The diet and at-sea foraging behaviour of these sympatric species was compared during the austral summer period when their pup rearing period overlapped. The prey of the two fur seal species was very similar, with fish dominating the diet. Themyctophid, Electrona subaspera, was the main prey item (93.9%) in all months of the study. There were no major differences in the diving behaviour between species. Both species foraged north of the island parallel to the Macquarie Ridge. Foraging activity was concentrated at two sites: (i) within 30 km north of the island; and (ii) at 60 km north. Most locations for overnight foraging trips were within 10 km of the colonies. The different lactation strategies of A. gazella and A. tropicalis allowed for flexibility in foraging behaviour. At Macquarie Island, the local marine environmental conditions have resulted in similar foraging behaviour for both species.

  • Elephant seals use a suite of physiological and behavioural mechanisms to maximise the time they can be submerged. Of these hypo-metabolism is one of the most important, so this study quantified maximum O2 consumptions relative to dove depth and swim speed. From the abstract of the referenced paper: Heart rate, swimming speed, and diving behaviour were recorded simultaneously for an adult female southern elephant seal during her postbreeding period at sea with a Wildlife Computers heart-rate time depth recorder and a velocity time depth recorder. The errors associated with data storage versus real-time data collection of these data were analysed and indicated that for events of short duration (i.e., less than 10 min or 20 sampling intervals) serious biases occur. A simple model for estimating oxygen consumption based on the estimated oxygen stores of the seal and the assumption that most, if not all, dives were aerobic produced a mean diving metabolic rate of 3.64 mL O2 kg-1, which is only 47% of the field metabolic rate estimated from allometric models. Mechanisms for reducing oxygen consumption while diving include cardiac adjustments, indicated by reductions in heart rate on all dives, and the maintenance of swimming speed at near the minimum cost of transport for most of the submerged time. Heart rate during diving was below the resting heart rate while ashore in all dives, and there was a negative relationship between the duration of a dive and the mean heart rate during that dive for dives longer than 13 min. Mean heart rates declined from 40 beats min-1 for dives of 13 min to 14 beats min-1 for dives of 37 min. Mean swimming speed per dive was 2.1 m s-1, but this also varied with dive duration. There were slight but significant increases in mean swimming speeds with increasing dive depth and duration. Both ascent and descent speeds were also higher on longer dives. Data were collected on Time Depth Recorders (TDRs), and stored in hexadecimal format. Hexadecimal files can be read using 'Instrument Helper', a free download from Wildlife Computers (see the provided URL). Data for this project is the same data that was collected for ASAC projects 769 and 589 (ASAC_769 and ASAC_589).

  • The factors that control the number of animals in a population are often difficult to understand. However, this basic understanding is central to managing those populations and assessing how they might respond to human induced pressures. For animals living in the Antarctic, like penguins, the marine environment that they depend on for food can vary due to natural events such as El Nino, and potentially due to human induced changes such as global warming. This study uses modern computer technology to track Royal penguins at sea and to monitor their time on land. By relating where the birds go to feed, what they feed on, and how successfully they catch their food to the survival rates of their chicks, this study will describe how fluctuations in a major Antarctic oceanographic feature (the Antarctic Polar Front) can influence the size of the Royal penguin population at Macquarie Island. Information on breeding success, diet and foraging success were collected each year between 1997-2001. Diving behaviour and at-sea movements were also quantified between 1997 and 1999. These data will also be available in the ARGOS satellite tracking database. Attached to this metadata record are ARGOS tracking data collected by Cindy Hull between 1994 and 2000. The tracking data have been collected from 19 different royal penguins. The download file contains a csv file with tracking data.

  • The foraging ecology of three fulmarine petrels including Cape petrels, Southern fulmars and Antarctic petrels were investigated at Hop Island during the 2015/16 austral summer. Two datasets were generated: 1) tracking data from Fulmarine petrels, and 2) stable isotope analysis of blood, feathers and egg shells. Tracking data were collected using Ecotone GPS trackers attached to the birds back feathers with tape. Location data has been interpolated using great circle distance to a time step of 15 minutes and include a record of whether the bird dived during that time period or not. Each location point was assigned a breeding stage (incubation or chick rearing) based on individual nest activities. Stable isotope ratios of carbon (13C/12C) and nitrogen (15N/14N) were determined by analysing 1 mg aliquots through continuous flow - elemental analysis - isotope ratio mass spectrometry (CF-EA-IRMS). Isotopic values of blood reflect approximately the last 52 days before sampling and thus the incubation period of all three species. Egg membranes and feathers remain metabolically inert after formation, and hence reflect the trophic niche during the pre-laying and moult period, respectively. We collected moult feathers during the chick-rearing period and therefore assumed that these were formed one year prior to the collection date and thus represent the trophic niche of the chick-rearing period one year earlier (austral summer 2014-15).

  • The demographic performance of high level antarctic predators is ultimately determined by the oceanic processes that influence the spatial and temporal distribution of primary productivity. This study will quantify the links between the foraging performance of southern elephant seals and a range of oceanographic parameters, including sea surface temperature, productivity and bathymetry. These data are a crucial component in understanding how antarctic predators will respond to changes in the distribution of marine and will be an important contribution to our understanding of the on-going decline in elephant seal numbers. Data were originally collected on Time Depth Recorders (TDRs), and stored in hexadecimal format. Hexadecimal files can be read using 'Instrument Helper', a free download from Wildlife Computers (see the URL given below). However, these data have been replaced by an Access Database version, and have also been loaded into the Australian Antarctic Data Centre's ARGOS tracking database. The database can be accessed at the provided URLs.

  • Elephant seals use a suite of physiological and behavioural mechanisms to maximise the time they can be submerged. Of these hypo-metabolism is one of the most important, so this study quantified maximum O2 consumptions relative to dove depth and swim speed. From the abstract of the referenced paper: The ability of air-breathing marine predators to forage successfully depends on their ability to remain submerged. This is in turn related to their total O2 stores and the rate at which these stores are used up while submerged. Body size was positively related to dive duration in a sample of 34 adult female southern elephant seals from Macquarie Island. However, there was no relationship between body size and dive depth. This indicates that smaller seals, with smaller total O2 stores, make shorter dives than larger individuals but operate at similar depths, resulting in less time being spent at depth. Nine adult female elephant seals were also equipped with velocity time depth recorders. In eight of these seals, a plot of swimming speed against dive duration revealed a cloud of points with a clear upper boundary. This boundary could be described using regression analysis and gave a significant negative relationship in most cases. These results indicate that metabolic rate varies with activity levels, as indicated by swimming speed, and that there are quantifiable limits to the distance that a seal can travel on a dive of a given swimming speed. However, the seals rarely dive to these physiological limits, and the majority of their dives are well within their aerobic capacity. Elephant seals therefore appear to dive in a way that ensures that they have a reserve of O2 available. Data were collected on Time Depth Recorders (TDRs), and stored in hexadecimal format. Hexadecimal files can be read using 'Instrument Helper', a free download from Wildlife Computers (see the url given below). Data for this project is the same data that was collected for ASAC projects 857 and 589 (ASAC_857 and ASAC_589).

  • GPS units were deployed on Adelie penguins at Hop Island in the Rauer Group during the 2011/12 field season. Deployments were made during the incubation, guard and creche periods. The units were later retrieved and the data downloaded. The data were collected following protocols approved by the Australian Antarctic Animal Ethics Committee and supported through the Australian Antarctic program through Australian Antarctic Science project 4087. The GPS units were supplied by Louise Emmerson of the Australian Antarctic Division through the AAS project 4087 budget and deployed and retrieved by Nobuo Kokubun of the National Institute of Polar Research, Japan with field assistance from Barbara Wienecke of the Australian Antarctic Division. Further information is available with the data. Please refer to the Seabird Conservation Team Data Sharing Policy for use, acknowledgement and availability of data prior to downloading data.

  • At Hop Island in the Rauer Group during the 2012/13 field season combinations of data loggers were deployed on different adelie penguins. The data loggers were GPS (two types), time-depth recorders and accelerometers. The accelerometer records head movement to identify when the bird captures prey. The units were later retrieved and the data downloaded. A document included with the data has further information about the data. The data were collected following protocols approved by the Australian Antarctic Animal Ethics Committee and supported through the Australian Antarctic program through Australian Antarctic Science project 4087. Data from GPS units deployed at Hop Island in 2011/12 is described by the metadata record with ID AAS_4087_adelie_penguin_tracking_hop_island_2011_12.

  • Metadata record for data from ASAC Project 1252 See the link below for public details on this project. Currently three datasets are attached to this metadata record. Dive data collected in 1988, track data from adult birds collected in 1994 and track data from fledglings collected in 1995. Dive data are available in Microsoft Word format, while the track data are available in Microsoft Excel format. A readme file (txt) is included in each download file to explain column headings, etc. ---- Public Summary from Project ---- To breed successfully the winter-breeding emperor penguins must fatten on two occasions: once before the onset of moult in January, and again prior to the commencement of the new breeding season in March. Interference with the capacity of the penguins to fatten in summer might be detrimental to the their breeding performance and survival later on in winter. This study seeks to determine the likely impact of commercial fishing operations on emperor penguin colonies at the Mawson Coast. More specifically, the data pertains to the locations of emperor penguins when fattening prior to the moult, and prior to the new breeding season. Project objectives: 1. To determine the extent and location of foraging areas of post-breeding adult Emperor penguins in summer. 3. To determine the extent and locations of foraging areas of fledgling Emperor penguins on their first trip to sea. 4. To identify interseasonal and interannual variations in foraging areas in conjunction with changes in seaice conditions and compare these with results from different colonies. 5. To survey the coastline of the AAT to verify the existence (or non-existence) of Emperor penguin colonies. Emperor penguins are icons of Antarctic wildlife and their conservation is of paramount interest to the wider community. They are also key consumers of marine resources in several areas and consequently there is great potential for interactions between feeding penguins and harvesting of fish and krill. Emperor penguins are one of the few species to breed on the fast ice (although there are three known land-based colonies, one of which has all but ceased to exist in recent years). Thus, the breeding habitat of Emperor penguins is subject to direct alteration as a result of climate change. Colonies of Emperors are found across a wide latitudinal range, from deep in the Ross Sea to the tip of the Antarctic Peninsula. This range includes breeding areas where significant changes in seaice are not (yet?) thought to be occurring to areas where seaice is changing rapidly. Accordingly, studies at multiple locations will provide valuable clues on how this species will be affected by a warming Antarctic. Additionally, Emperor penguins are large animals that live in a relatively small number of discrete locations. It is therefore more than feasible, using an international effort, to study an entire species and to make some predictions about their response to a warming world and to current and future fishing practices. This project aims to make the first steps towards an overall conservation assessment of Emperor penguins through studies in several locations around the Antarctic continent. Should these attempts be successful, then a more ambitious international project will be launched to take a species-wide perspective.