Keyword

EARTH SCIENCE > OCEANS > WATER QUALITY > OCEAN CONTAMINANTS

35 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 35
  • Metadata record for data from ASAC Project 2385 See the link below for public details on this project. ---- Public Summary from Project ---- Facilities for chemical analysis of environmental samples in Antarctica are limited, with samples frequently shipped at great expense to Australia for analysis. Development of a technique to concentrate metals from environmental samples into a thin film which can be easily transported to a laboratory for analysis is currently underway. DGT stands for Diffusive gradients in thin films, they are a passive sampling technique for trace metals based on Fick's First Law of diffusion. Basically the theory being the method: Zhang, H. and Davison, W., Anal Chem, 1995, 67, 3391-400 and Davison, W. and Zhang, H., Nature (London), 1994, 367, 546-8. Description of spreadsheets: All data were collected using DGT sediment probes or water samplers prepared from polyacrylamide diffusion layer (0.8 mm thickness, covered with a 0.13 mm thick membrane filter) and Chelex 100 binding layer (0.4 mm thick). Metadata 0304 sediment - DGT sediment probes were deployed during the 0304 summer. Samples were deployed in a 3 x 2 back-to-back array at the inner and outer sites in Brown and O'Brien Bay. ie 1.1 and 1.2 are back to back pair. All samplers were deployed for 34 days. More accurate date are on the attached s'sheet. Results shown are nanograms of metals per square centimetre accumulated in the samplers at a resolution of 2 cm. The detection limits of the metals for the samplers are based on 3 x stdev of the field blank probes. Where value = &nd& the value was less than the method detection limit. Metadata 0304 sediment Characterisation - Cores were sampled in Dec 2003 - Jan 2004 from Casey Station region. All characterisation was performed on the same 1 cm slices of core. Cores were sampled and analysed in anoxic conditions. Latitudes and Longitudess Brown Bay inner66.2803 S, 110.5414 E Brown Bay outer66.2802 S, 110.5451 E O'Brien Bay inner66.3122 S, 110.5147 E O'Brien Bay outer66.3113 S, 110.5162 E Metadata 0203 sediment - Results shown are sediment profile in nanograms of metals per square centimetre accumulated in the samplers at a resolution of 1 m. Samples 1.x were deployed for 5 days before the summer melt, 2.x were deployed for 10 days before the melt, 3.x were deployed for 15 days before the melt, 4.x were deployed for 21 days before the melt, 5.x were deployed for 28 days before the melt, 6.x were deployed for 5 days during the melt and 7.x were deployed for 20 days during the melt. The detection limits of the metals for the samplers are based on 3 x stdev of the field blank probes. Where value = 'nd' the value was less than the method detection limit. Metadata 0304 water - Results show metals in DGT water samplers deployed for 28 days. Actual times are on spreadsheet attached. Samplers were deployed in triplicate at three depths in the water column, with the depth from the sed bed meaning metres above the sea bed in the water column. Values in the original spreadsheet is nanograms of metals accumulated in sampler of 3.14cm2 area. The detection limits of the metals for the samplers are based on 3 x stdev of the field blank. Where value = 'nd' the value was less than the method detection limit. Metadata 0203 water - Results show metals in DGT water samplers deployed for 8 days. Samplers were deployed in triplicate at three depths in the water column. Depth from seabed is a measure of distance from the sea bed to the deployment depth in the water column. Values in the original spreadsheet is nanograms of metals accumulated in sampler of 3.14cm2 area. The detection limits of the metals for the samplers are based on 3 x stdev of the field blank. Where value = 'nd' the value was less than the method detection limit. ---- One thing to note, although the metal isotopes are listed, ie Cd111(LR), this is still a measure of the elemental Cd (ie all isotopes), it is just how the ICP-MS analyst presents the data when I get the raw data back. I probably should have corrected this by remove the number to remove any ambiguity involved. A pdf file of supplementary figures created from the raw data are also included as a download file. Explanations of the figures are presented below. Supplementary Data Figure Captions Figure S1. 2002 - 03 DGT water sampling results for Cd, Fe and Ni, before the melt (upper) and during the melt (lower). BB Brown Bay, OBB O'Brien Bay, top top depth, mid middle depth, bot bottom depth. Error bars represent minimum and maximum values based on three replicates and horizontal line is the detection limit based on 3s Figure S2. 2002 - 03 DGT uptake results for Mn, Fe and As in Brown Bay (upper) and O'Brien Bay (lower) for various deployment times Figure S3. 2003 - 04 DGT sediment probes results for Brown Bay outer. Upper axis represents maximum porewater concentration assuming no resupply; symbols are for 6 replicate DGT probes. Detection limit, based on 3s is represented by vertical line Figure S4. 2003 - 04 DGT sediment probes results for O'Brien Bay inner. Upper axis represents maximum porewater concentration assuming no resupply; symbols are for 6 replicate DGT probes. Detection limit, based on 3s is represented by vertical line Figure S5. 2003 - 04 DGT sediment probes results for O'Brien Bay outer. Upper axis represents maximum porewater concentration assuming no resupply; symbols are for 6 replicate DGT probes. Detection limit, based on 3s is represented by vertical line Figure S6. Sediment porewater concentrations from replicate Brown Bay outer cores Figure S7. Sediment porewater concentrations for O'Brien Bay inner (open circles) and outer (closed circles)

  • Metadata record for data from ASAC Project 2946. Public Shallow nearshore marine habitats are rare in the Antarctic but human activities have led to their contamination. Preliminary studies suggest the characteristics of Antarctica nearshore sediments are different to elsewhere and that contaminant partitioning and absorption, and hence bioavailability, will also be very different. Predictive exposure-dose-response (effects) models need to be established to provide the theoretical basis for the development of sediment quality guidelines to guide remediation activities. Such a model will be possible through the development of an artificial 'living' sediment, which can be used to understand physical and chemical properties that control partitioning and absorption of contaminants. Taken from the 2009-2010 Progress Report: Project objectives: 1. Collate and review existing knowledge on sediment properties in nearshore marine sediments in Antarctica to determine their physical, chemical and microbiological properties and identify gaps in our knowledge of sediment characteristics 2. Construct a range of artificial sterile sediments taking into account characteristics of naturally occurring nearshore sediments in the Antarctic. Examine physical and chemical properties of these sediments and understand the properties that control partitioning of contaminants by manipulation of bulk sediment composition and measuring the adsorption isotherms of important metal contaminants (Cu, Cd, Pb, As, Sn, Sb) in these artificial sediments 3. Produce 'living' sediments by inoculation of sterile sediments with Antarctic bacteria and diatoms that will support natural microbial communities. Examine physical and chemical properties of these sediments and understand the properties that control the partitioning and absorption of contaminants by manipulation of the bulk sediment composition and spiking metal contaminants into these artificial sediments. Progress against objectives: Using published literature the approximate composition of Antarctic sediments was determined. Representative sediment phases were collected form a uncontaminated environment, the chemical composition measured and absorption capacities of Cd and Pb established. The download file contains several excel spreadsheets. Some information about them is provided below: My =ref is reference in thesis EN =is endnote reference Nearby station = is closest known reference point to where samples collected TOC = total organic carbon TOM = Total organic matter BPC =biogenic particulate carbon TN = total nitrogen TP = Total phosphorus BSi = biogenic silica Ci = initial aqueous phase concentration qe = solid phase equilibrium concentration

  • Two toxicity tests were conducted in the Davis station laboratories in December 2010. Tests used locally collected amphipods of the species Orchomenella pinguides. The tests were conducted by Bianca Sfiligoj, as part of her PhD research (Sfiligoj 2013), with results published in (Sfiligoj et al. 2015). Field and laboratory work was conducted under project AAS 2933, with analysis and write-up completed under AAS 4100 (both projects CI: King). Details are fully described in the published manuscript provided with this data record; file name: Sfiligoj et al 2015_Ecotoxicology.pdf. A subset of the data is also used in Candy et al. 2015 (Filename: Candy et al 2015_Ecotoxicology.pdf). Data files: Test data are provided in the .xlsx file: 'Orchomenella-Tests-Dec 2010.xlsx'. Each worksheet includes a "This worksheet provides…" description in cell A1. Laboratory notebook records are provided in the scanned file: Sfiligoj-LabBookScan-Davis10-11.pdf. In this notebook, tests are labelled LT1 and LT2 (referred to as: amphipod lentil test 1 and 2); with results recorded on pages: 1-19 and 26-28. Data associated with this record has also been presented at: - Candy SG, Sfiligoj BJ, King CK, Mondon JA (2013) Modelling interval-censored survival times in toxicological studies using generalized additive models, The International Biometric Society Australasian Region Conference 2013, Mandurah, Australia, 1-5 December 2013. - Sfiligoj BJ, King CK, Candy SG, Mondon JA (2012) Development of appropriate bioassay and statistical methods for determining survival sensitivities of Antarctic marine biota to metal exposure, 2nd Society for Environmental Toxicology and Chemistry (SETAC) Australasia Conference, Brisbane, Australia, 4-6 July 2012. - Sfiligoj BJ, King CK, Candy SG, Mondon JA (2012) Development of appropriate bioassay and statistical methods for determining survival sensitivities of Antarctic marine biota to metal exposure, Society for Environmental Toxicology and Chemistry (SETAC) World Congress, Berlin, Germany, 20-24 May 2012.

  • Data on the morphological and reproductive responses of 4 species of wild caught Abatus heart urchins (A. nimrodi, A. shackletoni, A. ingens, and A. philippii) to sewage effluent from the Davis station sewage outfall. Between 19 and 21 individuals of each species were collected from three sites close to the station. The Sewage outfall site, which acted as the impacted site for the study, and two reference sites, one at Airport Beach, and a second and Heidemann Bay. Morphological measurements taken from each individual were length, width, height, anterior length, and posterior length. A qualitative assessment of the calcareous test of each individual was conducted to determine the presence of any abnormalities (as per Land 2005, PhD thesis) in the individuals morphology. Reproductive data collected were a gonadosotic index (calculated by dividing the gonal mass of a individual by the total mass of that individual). And for females morphological measurements (length and width) of each brood pouch were taken, and the type and number of juveniles in each pouch was counted. Data available: In the spreadsheet provided a description of measurements is given in the first tab. All morphological and reproductive data is presented in the second tab. In full these are; Parent Barcode (for tracking purposes) Individual Barcode (for tracking purposes), date collected (date the animal was collected) date processed (date data were collected) site (site the animal came from) species (nimrodi, shackletoni, ingens, or philippii) sex (male or female) samples taken for other projects (morphology, genetics, histology) Morphological measurements (length, width, height, posterior length, anterior length, all recorded in millimetres) Any of a possible 6 abnormalities observed. Brood pouch morphometrics (length and width in millimeters of each of the 4 brood pouches for a female) Reproductive fitness, being the number of young at any of 3 stages in each of the 4 brood pouches and the total number of juveniles produced by the adult female. Total Wet Mass (mass of the entire animal recorded in grams) Gonad Wet Mass (mass of the gonad of an individual) Gonadosmotic Index (measure of reproductive fitness, and is the Gonad Wet Mass divided by the Total Wet Mass of each individual) A blank datasheet used to record the data is contained within the third tab. The two final tabs are appendices used to aid the qualitative assessments. The first (Appendix 1) gives photo descriptions of each of the known abnormalities in Abatus sp (Adapted from Lane (2005) PhD thesis). The second (Appendix 2) gives photo descriptions of each of the developmental stages of juveniles in Abatus sp.

  • Live O. orensanzi were found in the AAD's Marine Research Facility emerging from sediments during feeding on 3 July 2014. It is likely that live specimens were included in samples collected for another species, Antarctonemertes sp. from intertidal rocky areas at Beall Island near Casey station (66 30.4265 degree S, 110 45.851 degrees E), East Antarctica in January and February 2014. It is also possible that the O. orensanzi were collected from southeast Newcomb Bay, adjacent to Casey station on 2 and 3 of February 2012 (Figure 4), and survived in the Marine Research Facility's aquarium, but this is considered less likely. Experiments were conducted at the AAD's quarantine facility in Kingston, Tasmania, between 19 July and 2 September 2014. This metadata record contains the results from bioassays conducted to show the response of Antarctic Polychaetes Ophryotrocha orensanzi to contamination from combinations if IFO 180 fuel and the fuel dispersants Ardrox 6129, Slickgone LTSW and Slickgone NS. Test solutions were prepared following the methods of Singer et al. (2000) with modifications by Barron and Ka'aihue (2003) and others. Water accommodated fractions of fuel in water (WAF) were produced using a 1:25 (v/v) fuel to FSW ratio in accordance with studies by Payne et al. (2014) and Brown et al., (2016) to facilitate comparability of results. Chemically enhanced water accommodated fractions (CEWAF) were made following a lower 1:100 (v/v) fuel to FSW ratio. A 1:20 (v/v) dispersant to fuel ratio was used for all three dispersants, an application rate of 1:20 dispersant to fuel rate was used both because this is the standard default application rate used in the field and to increase comparability to previous studies. Dispersant only mixes were made according to CEWAF specifications, substituting FSW for fuel. Test mixes were prepared in dark temperature-controlled cabinets at 0 plus or minus 1 degree C. Mixes were made in two L or five L glass aspirator bottles using a magnetic stirrer. Mix preparation followed the pre-vortex method in which a 20 - 25 % vortex was achieved in 0 plus or minus 1 degree C FSW before addition of the test materials. Once added, fuel was allowed to cool for a further 10 minutes before subsequent addition of dispersants during CEWAF preparation. Mixes were stirred for a total of 42 h with an additional settling time of 6 h following the recommendations determined as part of the hydrocarbon chemistry component of this project (Kotzakoulakis, unpublished data). The mixture was subsequently serially diluted to achieve the desired concentrations. Test concentrations were 100%, 50%, 20% and 10% for WAF and 10%, 5%, 1% and 0.1% for CEWAF. Concentrations for dispersant only treatments mimicked CEWAF in order to be directly comparable. Test solutions were kept in sealed glass bottles with minimal headspace at 0 plus or minus 1 degree C for a maximum of 3 h before use. Test dilutions were remade each four day period to replenish hydrocarbons lost through evaporation and absorption to simulate a repeated pulse exposure to the contaminant. Ninety percent of the test solution volume was replaced for each beaker during each water change by gently tipping out the solution with minimal disturbance to the test organisms. Replacement solutions were chilled to the correct temperature and replenished immediately to avoid any temperature shock to test animals. Beakers were topped up with deionized water between water changes to maintain water quality and solution volume. Bioassays were conducted in cold temperature cabinets at 0 plus or minus 1 degree C and light regimes were set to 18 h light and 6 h dark to mimic Antarctic conditions used by Brown et al. (2017). Exposure vessels were 100 ml glass beakers containing 80 ml of test solution. Beakers were left open to allow for the evaporation of lighter fuel components. Each experiment consisted of four replicates per treatment concentration, with eight to 10 individuals per replicate (8 each for Slickgone NS, 10 each for Ardrox and LTSW). Experiments ran for 12 days with observations at 24 h, 48 h, 96 h, 7 d, 8 d, 10 d and 12 d. Mortality was assessed at each observation using a Leica MZ7.5 dissecting microscope. Mortality was determined by the absence of response to stimuli, specifically lack of movement in the maxillae or mandibles. No food was added during experiments to avoid inclusion of an additional exposure pathway. Aliquots of each test concentration were taken at the beginning and end of each experiment, as well as before and after each water change to analyse the total petroleum hydrocarbon (TPH) content. Duplicate 25 ml samples were taken for each test dilution and immediately extracted with a mixture of Dichloromethane spiked with an internal standard of BrC20 (1-bromoeicosane) and cyclooctane. Extractions were analysed using Gas Chromatography with Flame Ionisation Detection (GC-FID) and Gas Chromatography mass spectrometry (GC-MS). The measured concentrations were integrated following the methods of Payne et al. (2014) to obtain a profile of hydrocarbon content over each 12 d test period.

  • These are the scanned electronic copies of field and lab books used at Casey Station between 1997 and 2012 as part of ASAC (AAS) project 2385 - Development and application of DGT devices for passive sampling of contaminated waters in the Antarctic environment.

  • This data set provides the organochlorine content found in four sea-ice samples collected in the vicinity of Davis station over a three week period in 2014/15. Sea-ice is thought to serve as a reservoir for organochlorine pesticides during the winter. The aim of the study was to investigate the movement of organochlorine pesticides in the seasonal sea-ice during ice melt. A custom made, closed-system, ice melting unit, coupled to an in-situ water filter, was implemented for sampling. Minimal ice-melt or change in organchlorine content was found over the three week period. Changes were attributed to high ventilation of the sea-ice surface caused by high wind speeds found in the Antarctic compared to the Arctic. 4 sea-ice samples were collected in the vicinity of Davis station and contaminant profiles extracted and analysed. Caution should be taken in interpretation of data as the ice/water extraction unit failed during operation.

  • Marine debris records from beaches on Heard and Macquarie Islands and floating debris spotted on voyages. Data were collected by observers surveying beaches either methodically or opportunistically, and by observers spotting debris as it floated past ships. The data were originally collated into a searchable database, but the application is no longer supported by the Australian Antarctic Data Centre. An extract of the data is attached to this metadata record. The extract is in Excel format, and each worksheet is a copy of a database table.

  • This metadata record contains an Excel file containing total petroleum hydrocarbon data from analysis of marine sediments collected at Davis Station from December 2009 to March 2010. Refer to the Davis STP reports lodged under metadata record Davis_STP for the full Davis Sewage Treatment Project methods and result details. Davis STP - Total petroleum hydrocarbons Hydrocarbons were extracted from a 10g sub-sample of homogenised wet soil by tumbling overnight with a mixture of 10 mL of deionised water, 10 mL of dichlormethane (DCM), and 1 mL of DCM spiked with internal standards: 254 mg/L bromoeicosane; 55.2 mg/L 1,4 dichlorobenzene; 51.2 mg/L p-terphenyl; 52.2 mg/L tetracosane-d50; and 255 mg/L cyclo-octane. Samples were then centrifuged for 5 minutes at 1000 rpm, this was repeated a further 3 times to ensure complete separation of the organic and aqueous fractions. The DCM fraction was then extracted and placed into GC-vials. Extracts were analysed for total petroleum hydrocarbons (TPH) by gas chromatography using flame ionisation detection (GC-FID; Agilent 6890N with a split/splitless injector) and an auto-sampler (Agilent 7683 ALS). Separation was achieved using an SGE BP1 column (25 m x 0.22 mm ID, 0.25 µm film thickness). 1 µL of extract was injected (5:1 pulsed split) at 310° C and 17.7 psi of helium carrier gas. After 1.3 minutes, the carrier gas pressure was adjusted to maintain constant flow at 3.0 mL/min for the duration of the oven program. The oven temperature program was started at 36 °C (held for 3 minutes) and increased to 320 °C at 18 °C/min. Detector temperature was 330 °C. TPH concentrations were determined using a calibration curve, generated from standard solutions of special Antarctic blend diesel (SAB), and standard diesel. TPH was measured using the ratio of the total detector response of all hydrocarbons to the internal standard peak response. List of compounds analysed - C8-C28 individual hydrocarbon components - Naphthalene - Biomarkers (phytanes) - Total signal and area, and resolved compounds from C8 to C40, over specific ranges (e.g. C9-C18, SAB) Reporting limit - 0.3 mg.kg-1 on a dry matter basis (DMB) for individual components - 2.5-160 mg.kg-1 on a dry matter basis (DMB) for various calculated ranges Analytical uncertainty - Analytical precision: (a) 3 samples extracted and analysed in triplicate, (b) 3 extracts analysed by GC-FID in duplicate; only 1 of each set greater than RL (160): (a) RSD = 2%, (b) RSD = 0.4% - Site heterogeneity: reproducibility (RSD) of mean data from site replicate samples (mostly duplicates) was 24% (mean, SD 20%, range 4-60%, n=8) - From the limited data on reproducibility summarised above, it can be concluded that site heterogeneity contributes most to the uncertainty of the TPH data for the site locations. Background of the Davis STP project Refer to the Davis STP reports lodged under metadata record Davis_STP.

  • Rapid toxicity tests (Kefford et al. 2005) were used to test the sensitivity of a wide range of intertidal and shallow sub-tidal marine invertebrates collected off the northern end of Macquarie Island. The tests were 10 days long, with a water change at 4 days. Resulted in the data set are non-modelled LCx (concentrations lethal to x% of the test populations) values for Copper (Cu) 10 days of exposure. Kefford, B.J., Palmer, C.G., Jooste, S., Warne, M.St.J. and Nugegoda, D. (2005). What is it meant by '95% of species'? An argument for the inclusion of rapid tolerance testing. Human and Ecological Risk Assessment 11: 1025-1046. Invertebrates collected from a range of coastal waters off the northern end of Macquarie Island . The columns in the spreadsheet are as follows: Lowest ID = the lowest identification the taxa is ID to (can be species, genus, family, etc.) Group = major taxonomic group the taxa comes from Letter = a convent identifier to split the taxa LC50 discpt = a string description of the10 day LC50 (lethal concentration for 50% of the test population) LC50 point estimate = a point estimate of the 10 day LC50 (lethal concentration for 50% of the test population) Cencor = indicates if the LC50 is right censored (that is greater than the value indicated in the point estimate) Case = a number to identify the record Project Public Summary: Despite pollution concerns in Antarctic and southern oceans, there is little ecotoxicological data and none from the sub-Antarctic. Ecological risk assessments and water quality guidelines should use local data, especially in the polar environment as organisms may respond differently to pollutants. The sub-Antarctic is, however, between Antarctica and the temperate zone and in the absence of local data, it maybe appropriate to use temperate data. This project will assess how the sensitivity to metals of marine invertebrates varies latitudinally and in which region of the Antarctic, if at all, it is appropriate to use temperate data.