EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > TRACE ELEMENTS
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
We collected surface seawater samples using trace clean 1L Nalgene bottles on the end of a long bamboo pole. We will analyse these samples for trace elements. Iron is the element of highest interest to our group. We will determine dissolved iron and total dissolvable iron concentrations. Samples collected from 7 sites: Sites 1, 2, 3, 4 were a transect perpendicular to the edge of the iceberg to try and determine if there is a iron concentration gradient relative to the iceberg. Sites 4, 5, 6 were along the edge of the iceberg to determine if there is any spatial variability along the iceberg edge. Site 7 was away from the iceberg to determine what the iron concentration is in the surrounding waters not influenced by the iceberg.
-
Trace metal concentrations are reported in micrograms per gram of sediment in core C012-PC05 (64⁰ 40.517’ S, 119⁰ 18.072’ E, water depth 3104 m). Each sediment sample (100-200mg) was ground using a pestle and mortar and digested following an initial oxidation step (1:1 mixture of H2O2 and HNO3 acid) and open vessel acid on a 150 degree C hotplate using 2:5:1 mixture of concentrated distilled HCl, HNO3 and Baseline Seastar HF acid. After converting the digested sample to nitric acid, an additional oxidation step was performed with 1:1 mixture of concentrated distilled HNO3 and Baseline Seastar HClO4 acid. A 10% aliquot of the final digestion was sub-sampled for trace metal analyses. Trace metal concentrations were determined by external calibration using an ELEMENT 2 sector field ICP-MS from Thermo Fisher Scientific (Bremen, Germany) at Central Science Laboratory (University of Tasmania). The following elements were analysed in either low (LR) or medium resolution (MR): Sr88(LR), Y89(LR), Mo95(LR), Ag107(LR), Cd111(LR), Cs133(LR), Ba137(LR), Nd146(LR), Tm169(LR), Yb171(LR), Tl205(LR), Pb208(LR), Th232(LR), U238(LR), Na23(MR), Mg24(MR), Al27(MR), P31(MR), S32(MR), Ca42(MR), Sc45(MR), Ti47(MR), V51(MR), Cr52(MR), Mn55(MR), Fe56(MR), Co59(MR), Ni60(MR), Cu63(MR), Zn66(MR).
-
This dataset will be comprised of measurements taken from trace metal water column samples collected during the SIPEX II Antarctic marine science voyage in 2012. In its current form no sample analysis has been performed. The dataset simply contains the log sheets for the Trace Metals Rosette (TMR) deployments as well as the output files from the TMR software (General Oceanics). Water samples for dissolved trace metal measurements were collected from the surface (15m) down to the 1000m using an autonomous intelligent rosette system (General Oceanics, USA) specially adapted for trace metal work and deployed on a Dyneema rope. The rosette was equipped with 12x10-L Niskin-1010X bottles specially modified for trace metal water sampling. This system has been successfully deployed on the RSV Aurora Australis during voyages au0703 and au0806. Care was taken to avoid any contamination from the ship and the operating personnel. Water samplers were processed aboard under an ISO class 5 trace-metal-clean laminar flow bench in to a trace-metal-clean laboratory container on the ship's trawl deck. All transfer tubes, filtering devices and sample containers were rinsed liberally with sample before final collection. Samples were then drawn through C-Flex tubing (Cole Parmer) and filtered in-line through 0.2 micron pore-size acid-washed capsules (Pall Supor membrane, Acropak 200). Filtered and unfiltered samples were collected in acid-cleaned 125ml Nalgene LDPE bottles for analysis of dissolved trace metals. Samples were also collected for the determination of stable isotopes of nitrogen and carbon. As well, filtered samples were taken for macro-nutrient analysis in the lab (2 small vials per Niskin, frozen). Regular sampling depths were as follows: 1000m, 750m, 500m, 300m, 200m, 150m, 125m, 100m, 75m, 50m, 30m, 15m. At a subset of the SIPEX II ice stations, filtered samples were also collected for Iron(II) analysis aboard the ship by Christina Schallenberg (in the trace-metal-clean laboratory container), and unfiltered samples were collected for analysis of mercury and methyl-mercury by Caitlin Gionfriddo (caitlingio@gmail.com).
-
Sediment cores were collected from the East Antarctic margin, aboard the Australian Marine National Facility R/V Investigator, during the IN2017_V01 voyage from January 14th to March 5th 2017 (Armand et al., 2018). This marine geoscience expedition, named the “Sabrina Sea Floor Survey”, focused notably on studying the interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles. The cores were collected using a multi-corer (MC), were sliced every centimetre, wrapped up in plastic bags, and stored in the fridge. Back at the home laboratory (IMAS, UTAS, Hobart, Australia), sediment samples were dried in an oven at 40°C. Three hundred mg of dry sediment was then homogenised and vortexed for 10-sec with 12 mL of a reductive solution of 0.005M hydroxylamine hydrochloride (HH) / 1.5% Acetic Acid (AA) / 0.001M Na-EDTA / 0.033M NaOH, at pH 4 (Huang et al., 2021). The leach mixture was then centrifuged, and 6 mL of the supernatant solution was collected into a Teflon vial. This solution was taken to dryness, oxidized with 1 mL HNO3 + 100 µL H2O2, and redissolved in 4 mL of 7.5M HNO3. A 0.5 mL aliquot was separated from the 4 mL solution for trace metal analysis by Sector Field Inductively Coupled Mass Spectrometry (SF-ICP-MS, Thermo Fisher Scientific, Bremen, Germany) at the Central Science Laboratory (UTAS, Hobart, Australia). Indium was added as internal standard (In, 100 ppb). 88Sr, 89Y, 95Mo, 107Ag, 109Ag, 111Cd, 133Cs, 137Ba, 146Nd, 169Tm, 171Yb, 185Re, 187Re, 205Tl, 208Pb, 232Th, 238U, 23Na, 24Mg, 27Al, 31P, 32S, 42Ca, 47Ti, 51V, 52Cr, 55Mn, 56Fe, 59Co, 60Ni, 63Cu and 66Zn were analysed using multiple spectral resolutions. Element quantification was performed via external calibration using multi-element calibration solutions (MISA suite, QCD Analysts, Spring Lake, NJ, USA). Raw intensities were blank and dilution corrected. References Armand, L. K., O’Brien, P. E., Armbrecht, L., Baker, H., Caburlotto, A., Connell, T., … Young, A. (2018). Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report. ANU Research Publications, (March). https://doi.org/http://dx.doi.org/10.4225/13/5acea64c48693 Huang, H., Gutjahr, M., Kuhn, G., Hathorne, E. C., and Eisenhauer, A. (2021). Efficient Extraction of Past Seawater Pb and Nd Isotope Signatures From Southern Ocean Sediments. Geochemistry, Geophysics, Geosystems, 22(3), 1–22. https://doi.org/10.1029/2020GC009287
-
Sample collection: Seawater samples were taken from the trace metal rosette system from ten different depths. Seawater samples from just underneath the ice were collected at the trace metal site using a grab sample. Water samples were spiked with 1% v/v ultra pure HCl within 24 hours of collection and stored in double Ziploc bags at ambient temperature. Brine samples were collected from sac holes at the trace metal and main bio sites. Sea ice cores were collected from either the Main Bio sample site or the Trace Metal site using sampling protocol followed by each group. Ice cores were cut using a stainless steel saw, in 6 cm sections, and then placed in double Ziploc bags and stored at -20 degrees C in large, clean plastic bins. Snow samples were collected from undisturbed sites, upwind from the ship, close to the trace metal site. Samples were collected into acid-washed glass jars (SN0 samples), or into acid-washed buckets lined with sterile Ziploc bags (FSN or UFSN samples). Snow samples were allowed to melt overnight at 4 degrees C, then acidified with 1% v/v HCl. Snow, brine, seawater samples used for mercury analysis were kept in sterile PETG bottles (250 or 500 mL), or acid-washed Teflon, or acid-washed glass bottles or jars, and preserved with 1% v/v HCl. Snow, brine, and seawater samples kept for culturing work were preserved in falcon tubes in 20% v/v glycerol and stored at -80 degrees C. For a detailed record of samples taken and analysed, please refer to the sample inventory spreadsheet. For mercury analysis, ice core sections were cut in half with a stainless steel trace metal hand saw and melted overnight at ambient temperature in acid-washed 500 mL glass jars. Half of the ice core sections were kept preserved at -20 degrees C for future analytical work. The melt (125-250 mL) was then transferred to acid-washed Teflon bottles and acidified with 1% v/v HCl and kept at ambient temperature. Total and methylmercury analysis: Seawater, sea ice, snow, and brine samples were analysed for total and methyl- mercury at the Mercury Lab at the USGS Wisconsin Water Research Center in Middleton, Wisconsin in March 2013. Total mercury (HgT) analysis was performed using the Manual HgT procedure outlined on the USGS Mercury Lab's website (http://wi.water.usgs.gov/mercury-lab/analysis-methods.html), which is based on EPA Method 1631. Methylmercury (MeHG) analysis was performed per the Brooks-Rand "MERX" by ICPMS isotope dilution method (USGS Open-File Report 01-445, http://wi.water.usgs.gov/mercury-lab/analysis-methods.html). Data files: Raw data for total mercury are saved as excel spreadsheets (YYYYMMDD_Analyst_HgT.xls), and the original logs of the chromatograms from the PeakNet software (MMDDYY.LOG). Raw data for methylmercury analysis are saved as excel files (YYYYMMDDAnalyst_MeHg Waters.xlsx), and the Chromera reports from the ICPMS.
-
Sediment cores were collected from the East Antarctic margin, aboard the Australian Marine National Facility R/V Investigator from January 14th to March 5th 2017 (IN2017_V01; Armand et al., 2018). This marine geoscience expedition, named the “Sabrina Sea Floor Survey”, focused notably on studying the interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles. The cores were collected using a multi-corer (MC) and a Kasten corer (KC). The MC were sliced every centimetre, wrapped up in plastic bags, and stored in the fridge. The KC was sub-sampled using an u-channel; and sliced every centimetre once back the home laboratory (IMAS, UTAS, Hobart, Australia). This dataset presents concentrations of major and trace elements measured in bulk multi-cores sediment samples collected during the IN2017_V01 voyage. The data include the sampling date (day/month/year), the latitude and longitude (in decimal degrees), the seafloor depth (in meter), the sediment core ID, the sediment depth (in cm), and the concentrations (in ppm or μg/g) of a suite of elements. This dataset presents concentrations of major and trace elements measured in bulk sediment samples collected during the IN2017_V01 voyage. The data include the sampling date (day/month/year), the latitude and longitude (in decimal degrees), the seafloor depth (in meter), the sediment core ID (KC14), the sediment depth (in cm), and the concentrations (in ppm or μg/g) of a suite of elements. About 200 mg of dried and ground sediment were weighed into a clean Teflon vial and oxidized with a mixture of concentrated HNO3 and 30% H2O2 (1:1). Samples were then digested in open vials using an acid mixture comprising 10 mL HNO3, 4 mL HCl, and 2 mL HF, at 180°C until close to dryness. Digested residues were converted to nitric form before being oxidised with a mixture of 1 mL HNO3 and 1 mL HClO4 at 220°C until fully desiccated. Samples were finally re-dissolved in 4 mL 7.5 M HNO3. A 400 μL aliquot was removed from the 4 mL digest solution and diluted ~2500 times in 2% HNO3 for trace metals analysis by Sector Field Inductively Coupled Mass Spectrometry (SF-ICP-MS, Thermo Fisher Scientific, Bremen, Germany) at the Central Science Laboratory (UTAS, Hobart, Australia). Indium was added as internal standard (In, 100 ppb). 88Sr, 89Y, 95Mo, 107Ag, 109Ag, 111Cd, 133Cs, 137Ba, 146Nd, 169Tm, 171Yb, 185Re, 187Re, 205Tl, 208Pb, 232Th, 238U, 23Na, 24Mg, 27Al, 31P, 32S, 42Ca, 47Ti, 51V, 52Cr, 55Mn, 56Fe, 59Co, 60Ni, 63Cu and 66Zn were analysed using multiple spectral resolutions. Element quantification was performed via external calibration using multi-element calibration solutions (MISA suite, QCD Analysts, Spring Lake, NJ, USA). Raw intensities were blank and dilution corrected. References L.K. Armand, P.E. O’Brien and On-board Scientific Party. 2018. Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report, Research School of Earth Sciences, Australian National University: Canberra.
-
The concentration of heavy metals in seawater at four sites around Casey was determined via Diffusive Gradients in Thin films (DGT) loggers attached to experimental mesocosms suspended below the sea ice. Data are the concentration of heavy metals in micrograms per litre (ug/l), equivalent to parts per billion (ppb)/litre Two loggers were attached to each mesocosm (perforated 20 litre food buckets) at each site; one at the top and one at the bottom of each mesocosm. Mesocosms were suspended two to three metres below the bottom edge of the sea ice through a 1 metre diameter hole and were periodically raised to the surface for short periods (~1 hour). This experiment was part of the short-term biomonitoring program for the Thala Valley Tip Clean-up at Casey during summer 2003/04. During Runs 1 and 2 of the experiment mesocosms were deployed at Brown Bay Inner (S66 16.811 E110 32.475), Brown Bay Outer (S66 16.811 E110 32.526), McGrady Cove (S66 16.556 E110 34.392) and O'Brien Bay 1 (S66 18.730 E110 30.810). In Run 3 mesocosm were deployed in open water with no sea ice covering at Brown Bay Inner (S66 16.807 E110 32.556), Brown Bay Outer (S66 16.805 E110 32.607), McGrady Cove (S66 16.520 E110 34.257) and O'Brien Bay (S66 17.607 E110 31.247). These data were collected as part of ASAC project 2201 (ASAC_2201 - Natural variability and human induced change in Antarctic nearshore marine benthic communities). See also other metadata records by Glenn Johnstone for related information.
-
Production of the arsenic species total inorganic arsenic [As(V+III)],arsenite [As(III)], monomethyl arsenic (MMA) and dimethyl arsenic (DMA) was studied in the Subantarctic Zone (SAZ) of the Southern Ocean, south of Australia, during the austral autumn (March 1998). Surface samples were collected approximately every degree of latitude along the meridional transect 14130' E from 42 to 55 S. In addition, representative vertical profiles were collected at: 4206' S, 14153' E (Subtropical Convergence Zone - STCZ), 4643' S, 14159' E (Subantarctic Zone - SAZ), 5104' S, 14336' E (Subantarctic Front - SAF) and 5344' S, 14142' E (northern branch of the Polar Frontal Zone - PFZ). As(V) was the dominant arsenic species in both vertical profiles and surface waters along the transect. It was also the only species observed at depths greater than 600 m. Production of the reduced arsenic species (As(III), MMA, DMA) was low in these waters compared with other oceanic sites with similar concentrations of chlorophyll a. As(III) concentrations could not be reliably quantified at any sites (less than 0.04 nM). Greatest conversion of arsenic to 'biological' species was found at the surface in the Subtropical Convergence Zone (2.5%) and decreased heading southward to 1% in the Polar Front (PF). While the decline in methyl arsenic production was broadly associated with water temperature and measures of biological production, slightly different trends in methyl arsenic production were found in the SAZ and PF. North of the Subantarctic Front (SAF) methyl arsenic production was well correlated with water temperature, while south of the front no such relation existed. In addition, the ratio of DMA/MMA increased south of the SAF, associated with a change in the microalgal community composition. Low water temperature, phosphate-replete conditions and low biological productivity in the SAZ all contribute to the concentrations of biologically produced arsenic species in this region being amongst the lowest reported for oceanic waters. The data are stored in an excel spreadsheet, and a readme text file.
-
Neodymium isotopes in seawater samples collected during the IN2017-V01 voyage of the RV Investigator
Samples were collected from the East Antarctic margin, aboard the Australian Marine National Facility R/V Investigator from January 14th to March 5th 2017 (IN2017_V01; Armand et al., 2018). This marine geoscience expedition, named the “Sabrina Sea Floor Survey”, focused notably on studying the interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles. Ten litres seawater samples were collected using a CTD rosette equipped with Niskin® bottle and filtered through a 0.45µm Acropak® capsule filter directly into acid-cleaned 10 L polyethylene jerrycans. Samples were then acidified to pH 2 with 2 mL/L of distilled 6M HCl in a laminar flow hood. These samples were analysed for neodymium (Nd) isotopes, a tracer of ocean circulation. In the home laboratory (IMAS Trace-Metal Lab, UTAS, Hobart, Australia), seawater samples were pre-concentrated using pre-packed Nobias® PA1L (Hitachi Technologies, Japan) chelating resin cartridges following the method of Pérez-Tribouillier et al., (2019). Rare Earth Elements were separated using anion-exchange chromatography (Anderson et al., 2012) and cation-exchange chromatography (Struve et al., 2016). Finally, Nd isotopes were isolated using LN-Spec column chemistry (Pin and Zalduegui, 1997). Purified seawater sample Nd concentrations were checked prior to isotopic analysis using Sector Field Inductively Coupled Mass Spectrometry (ICP-MS) at the Central Science Laboratory (UTAS, Hobart, Australia). Nd isotope ratio measurements were then carried out at the Geochemistry Laboratory of the School of Geography, Environment and Earth Sciences of Victoria University of Wellington, New Zealand, using a Thermo Finnigan Triton thermal ionization mass spectrometer (TIMS). Data were reduced offline for outlier rejection and corrected using 146Nd/144Nd = 0.7219 for mass fractionation using the exponential law, and 144Sm/147Sm = 0.20667 for the Sm interference correction on mass 144. JNdi standard data produced for two load sizes using two amplifier configurations were identical: 143Nd/144Nd = 0.512110 ± 24 2sd (46 ppm 2rsd, n = 16) for 1 ng loads using 1013Ω amplifiers, vs. 143Nd/144Nd = 0.512112 ± 3 2sd (6 ppm 2rsd, n = 6) for 100 ng loads using 1011Ω amplifiers. The corrected 143Nd/144Nd were normalised to the JNdi standard with the published value of 0.512115 (Tanaka et al., 2000). Nd isotopic compositions are reported as eNd = [(143Nd/144Nd)sample / (143Nd/144Nd)CHUR - 1]x10,000 , where CHUR is the Chondritic Uniform Reservoir with 143Nd/144Nd)CHUR = 0.512638 (Jacobsen and Wasserburg, 1980). References - Anderson R. F., Fleisher M. Q., Robinson L. F., Edwards R. L., Hoff J. A., Moran S. B., van der Loeff M. R., Thomas A. L., Roy-Barman M. and Francois R. (2012) GEOTRACES intercalibration of 230Th, 232Th, 231Pa, and prospects for 10Be. Limnol. Oceanogr. Methods 10, 179–213. A - Armand L. K., O’Brien P. E., Armbrecht L., Baker H., Caburlotto A., Connell T., Cotterle D., Duffy M., Edwards S., Evangelinos D., Fazey J., Flint A., Forcardi A., Gifford S., Holder L., Hughes P., Lawler K.-A., Lieser J., Leventer A., Lewis M., Martin T., Morgan N., López-Quirós A., Malakoff K., Noble T., Opdyke B., Palmer R., Perera R., Pirotta V., Post A., Romeo R., Simmons J., Thost D., Tynan S. and Young A. (2018) Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report. ANU Res. Publ. - Jacobsen S. B. and Wasserburg G. J. (1980) Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155. - Pérez-Tribouillier H., Noble T. L., Townsend A. T., Bowie A. R. and Chase Z. (2019) Pre-concentration of thorium and neodymium isotopes using Nobias chelating resin: Method development and application to chromatographic separation. Talanta, 1–10. - Pin C. and Zalduegui J. F. S. (1997) Sequential separation of light rare-earth elements , thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks. Anal. Chim. Acta 339, 79–89. - Struve T., Van De Flierdt T., Robinson L. F., Bradtmiller L. I., Hines S. K., Adkins J. F., Lambelet M., Crocket K. C., Kreissig K., Coles B. and Auro M. E. (2016) Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep-sea coral aragonite. Geochemistry, Geophys. Geosystems 17, 232–240. - Tanaka T., Togashi S., Kamioka H., Amakawa H., Kagami H., Hamamoto T., Yuhara M., Orihashi Y., Yoneda S., Shimizu H., Kunimaru T., Takahashi K., Yanagi T., Nakano T., Fujimaki H., Shinjo R., Asahara Y., Tanimizu M. and Dragusanu C. (2000) JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281.
-
This is a scanned copy of the annual report on the scientific work undertaken at Davis Station in 1985. The report was written by J.B. Gallagher. Paraphrased from the introduction: This report describes the work undertaken at Davis from January 1985 to November 1985. Aims of the program: 1) Description of the seasonal circulation patterns within Ellis Fjord. This was done by measuring the salinity temperature profiles at selected stations down the length of the fjord, its entrance and the sea. 2) Origin, age, circulation and mixing rates of the meromictic basin. The deep waters of the meromictic basin have a salinity of approximately 1.4 the salinity of sea water. It's possible that this may be due to old sea water left behind after an isostatic uplift with subsequent concentration through evaporation. Calculation of mixing rates and description of the water circulation will explain why the basin is so stable. 3) Recent sedimentation rates within the meromictic basin. Sediment was collected from 110m for 137Cs analysis - the peak in the profile should indicate the age of that layer of sediment as 1963, during which atmospheric bomb tests released large quantities of 137Cs into the atmosphere. 4) Biogeochemistry of sulphur, iron, manganese, aluminium and carbon within the meromictic basin. The deep waters of the meromictic basin are anoxic (from 45m). This gave an ideal opportunity to study the cycling of the above redox active elements. 5) Collection and processing of water for trace element analysis and organometallics.