Keyword

EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CARBON

25 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 25
  • Metadata record for data from ASAC Project 2592 See the link below for public details on this project. The Southern Ocean is one the most significant regions on earth for regulating the build up of anthropogenic carbon in the atmosphere, and the capacity for carbon uptake in the region could be altered by climate change. The project aims to use repeat ocean sections to detect anthropogenic carbon storage, identify key processes regulating the amount of storage, and to test models that predict future uptake. The data are broken down by season and voyage, and a word document providing further details about the project is also available as part of the download file.

  • Water samples of 1 to 2L from Niskin bottles filled close to the surface, mid mixed layer depth and bottom of the mixed layer were drawn cleanly through a 210um mesh to exclude zooplankton. All samples were filtered as two size fractions, 1.2 to 20um (larger particles excluded by 20um Nitex mesh) and a separate 1.2 to 210um total sample. The filters were 1.2um silver membranes (Sterlitech) 13mm diameter. The samples were preserved by drying at 60C in a dedicated clean oven. Prior to encapsulation, a 5mm diameter subsample was taken for biogenic silica analysis, which is delayed until there has been evaluation of the particle data from the flow cam and UVP. Samples were encapsulated in silver (Sercon sc0037) after acidification and drying. The decarbonated encapsulated POC samples were analysed by elemental analyser at the CSL UTAS by Dr Thomas Rodemann (EA TCD 960C, single point standardisation every 12 samples).  EA detection limit 0.001umol POC. POC and PON are presented as molar units. Blanks were process blanks (seawater) and 7% of the average for the combined data n=177. 1sd=0.12uM. The ctd casts were all given the prefix K, so K001, K002 etc. Not all stations were sampled due to budget constraints. Niskin is the Niskin bottle number.

  • This dataset contains Ffilter samples of known volume of sea water for - PIC (Particulate Inorganic Carbon) - POC (Particulate Organic Carbon) - BGSi (BioGenic Silicon) The dataset also contains transmissometer data. The transmissometer is an attempt at developing a correlation between the PIC filter samples and the transmissometer readings. This is development of methods. The data collection times are logged in the file and filter log sheets.

  • This dataset is a collection of marine environmental data layers suitable for use in Southern Ocean species distribution modelling. All environmental layers have been generated at a spatial resolution of 0.1 degrees, covering the Southern Ocean extent (80 degrees S - 45 degrees S, -180 - 180 degrees). The layers include information relating to bathymetry, sea ice, ocean currents, primary production, particulate organic carbon, and other oceanographic data. An example of reading and using these data layers in R can be found at https://australianantarcticdivision.github.io/blueant/articles/SO_SDM_data.html. The following layers are provided: 1. Layer name: depth Description: Bathymetry. Downloaded from GEBCO 2014 (0.0083 degrees = 30sec arcmin resolution) and set at resolution 0.1 degrees. Then completed with the bathymetry layer manually corrected and provided in Fabri-Ruiz et al. (2017) Value range: -8038.722 - 0 Units: m Source: This study. Derived from GEBCO URL: https://www.gebco.net/data_and_products/gridded_bathymetry_data/ Citation: Fabri-Ruiz S, Saucede T, Danis B and David B (2017). Southern Ocean Echinoids database_An updated version of Antarctic, Sub-Antarctic and cold temperate echinoid database. ZooKeys, (697), 1. 2. Layer name: geomorphology Description: Last update on biodiversity.aq portal. Derived from O'Brien et al. (2009) seafloor geomorphic feature dataset. Mapping based on GEBCO contours, ETOPO2, seismic lines). 27 categories Value range: 27 categories Units: categorical Source: This study. Derived from Australian Antarctic Data Centre URL: https://data.aad.gov.au/metadata/records/Polar_Environmental_Data Citation: O'Brien, P.E., Post, A.L., and Romeyn, R. (2009) Antarctic-wide geomorphology as an aid to habitat mapping and locating vulnerable marine ecosystems. CCAMLR VME Workshop 2009. Document WS-VME-09/10 3. Layer name: sediments Description: Sediment features Value range: 14 categories Units: categorical Source: Griffiths 2014 (unpublished) URL: http://share.biodiversity.aq/GIS/antarctic/ 4. Layer name: slope Description: Seafloor slope derived from bathymetry with the terrain function of raster R package. Computation according to Horn (1981), ie option neighbor=8. The computation was done on the GEBCO bathymetry layer (0.0083 degrees resolution) and the resolution was then changed to 0.1 degrees. Unit set at degrees. Value range: 0.000252378 - 16.94809 Units: degrees Source: This study. Derived from GEBCO URL: https://www.gebco.net/data_and_products/gridded_bathymetry_data/ Citation: Horn, B.K.P., 1981. Hill shading and the reflectance map. Proceedings of the IEEE 69:14-47 5. Layer name: roughness Description: Seafloor roughness derived from bathymetry with the terrain function of raster R package. Roughness is the difference between the maximum and the minimum value of a cell and its 8 surrounding cells. The computation was done on the GEBCO bathymetry layer (0.0083 degrees resolution) and the resolution was then changed to 0.1 degrees. Value range: 0 - 5171.278 Units: unitless Source: This study. Derived from GEBCO URL: https://www.gebco.net/data_and_products/gridded_bathymetry_data/ 6. Layer name: mixed layer depth Description: Summer mixed layer depth climatology from ARGOS data. Regridded from 2-degree grid using nearest neighbour interpolation Value range: 13.79615 - 461.5424 Units: m Source: https://data.aad.gov.au/metadata/records/Polar_Environmental_Data 7. Layer name: seasurface_current_speed Description: Current speed near the surface (2.5m depth), derived from the CAISOM model (Galton-Fenzi et al. 2012, based on ROMS model) Value range: 1.50E-04 - 1.7 Units: m/s Source: This study. Derived from Australian Antarctic Data Centre URL: https://data.aad.gov.au/metadata/records/Polar_Environmental_Data Citation: see Galton-Fenzi BK, Hunter JR, Coleman R, Marsland SJ, Warner RC (2012) Modeling the basal melting and marine ice accretion of the Amery Ice Shelf. Journal of Geophysical Research: Oceans, 117, C09031. http://dx.doi.org/10.1029/2012jc008214, https://data.aad.gov.au/metadata/records/polar_environmental_data 8. Layer name: seafloor_current_speed Description: Current speed near the sea floor, derived from the CAISOM model (Galton-Fenzi et al. 2012, based on ROMS) Value range: 3.40E-04 - 0.53 Units: m/s Source: This study. Derived from Australian Antarctic Data Centre URL: https://data.aad.gov.au/metadata/records/Polar_Environmental_Data Citation: see Galton-Fenzi BK, Hunter JR, Coleman R, Marsland SJ, Warner RC (2012) Modeling the basal melting and marine ice accretion of the Amery Ice Shelf. Journal of Geophysical Research: Oceans, 117, C09031. http://dx.doi.org/10.1029/2012jc008214, https://data.aad.gov.au/metadata/records/polar_environmental_data 9. Layer name: distance_antarctica Description: Distance to the nearest part of the Antarctic continent Value range: 0 - 3445 Units: km Source: https://data.aad.gov.au/metadata/records/Polar_Environmental_Data 10. Layer name: distance_canyon Description: Distance to the axis of the nearest canyon Value range: 0 - 3117 Units: km Source: https://data.aad.gov.au/metadata/records/Polar_Environmental_Data 11. Layer name: distance_max_ice_edge Description: Distance to the mean maximum winter sea ice extent (derived from daily estimates of sea ice concentration) Value range: -2614.008 - 2314.433 Units: km Source: https://data.aad.gov.au/metadata/records/Polar_Environmental_Data 12. Layer name: distance_shelf Description: Distance to nearest area of seafloor of depth 500m or shallower Value range: -1296 - 1750 Units: km Source: https://data.aad.gov.au/metadata/records/Polar_Environmental_Data 13. Layer name: ice_cover_max Description: Ice concentration fraction, maximum on [1957-2017] time period Value range: 0 - 1 Units: unitless Source: BioOracle accessed 24/04/2018, see Assis et al. (2018) URL: http://www.bio-oracle.org/ Citation: Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA and De Clerck O (2018). Bio_ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284 , see also https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis 14. Layer name: ice_cover_mean Description: Ice concentration fraction, mean on [1957-2017] time period Value range: 0 - 0.9708595 Units: unitless Source: BioOracle accessed 24/04/2018, see Assis et al. (2018) URL: http://www.bio-oracle.org/ Citation: Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA and De Clerck O (2018). Bio_ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284 , see also https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis 15. Layer name: ice_cover_min Description: Ice concentration fraction, minimum on [1957-2017] time period Value range: 0 - 0.8536261 Units: unitless Source: BioOracle accessed 24/04/2018, see Assis et al. (2018) URL: http://www.bio-oracle.org/ Citation: Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA and De Clerck O (2018). Bio_ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284 , see also https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis 16. Layer name: ice_cover_range Description: Ice concentration fraction, difference maximum-minimum on [1957-2017] time period Value range: 0 - 1 Units: unitless Source: BioOracle accessed 24/04/2018, see Assis et al. (2018) URL: http://www.bio-oracle.org/ Citation: Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA and De Clerck O (2018). Bio_ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284 , see also https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis 17. Layer name: ice_thickness_max Description: Ice thickness, maximum on [1957-2017] time period Value range: 0 - 3.471811 Units: m Source: BioOracle accessed 24/04/2018, see Assis et al. (2018) URL: http://www.bio-oracle.org/ Citation: Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA and De Clerck O (2018). Bio_ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284 , see also https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis 18. Layer name: ice_thickness_mean Description: Ice thickness, mean on [1957-2017] time period Value range: 0 - 1.614133 Units: m Source: BioOracle accessed 24/04/2018, see Assis et al. (2018) URL: http://www.bio-oracle.org/ Citation: Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA and De Clerck O (2018). Bio_ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284 , see also https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis 19. Layer name: ice_thickness_min Description: Ice thickness, minimum on [1957-2017] time period Value range: 0 - 0.7602701 Units: m Source: BioOracle accessed 24/04/2018, see Assis et al. (2018) URL: http://www.bio-oracle.org/ Citation: Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA and De Clerck O (2018). Bio_ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284 , see also https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis 20. Layer name: ice_thickness_range Description: Ice thickness, difference maximum-minimum on [1957-2017] time period Value range: 0 - 3.471811 Units: m Source: BioOracle accessed 24/04/2018, see Assis et al. (2018) URL: http://www.bio-oracle.org/ Citation: Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA and De Clerck O (2018). Bio_ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3), 277-284 , see also https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis 21. Layer name: chla_ampli_alltime_2005_2012 Description: Chlorophyll-a concentrations obtained from MODIS satellite data. Amplitude of pixel values (difference between maximal and minimal value encountered by each pixel during all months of the period [2005-2012]) Value range: 0 - 77.15122 Units: mg/m^3 Source: https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Monthly/9km/chlor_a/ URL: https://modis.gsfc.nasa.gov/data/dataprod/chlor_a.php 22. Layer name: chla_max_alltime_2005_2012 Description: Chlorophyll-a concentrations obtained from MODIS satellite data. Maximal value encountered by each pixel during all months of the period [2005-2012] Value range: 0 - 77.28562 Units: mg/m^3 Source: https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Monthly/9km/chlor_a/ URL: https://modis.gsfc.nasa.gov/data/dataprod/chlor_a.php 23. Layer name: chla_mean_alltime_2005_2012 Description: Chlorophyll-a concentrations obtained from MODIS satellite data. Mean value of each pixel during all months of the period [2005-2012] Value range: 0 - 30.42691 Units: mg/m^3 Source: https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Monthly/9km/chlor_a/ URL: https://modis.gsfc.nasa.gov/data/dataprod/chlor_a.php 24. Layer name: chla_min_alltime_2005_2012 Description: Chlorophyll-a concentrations obtained from MODIS satellite data. Minimal value encountered by each pixel during all months of the period [2005-2012] Value range: 0 - 29.02929 Units: mg/m^3 Source: https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Monthly/9km/chlor_a/ URL: https://modis.gsfc.nasa.gov/data/dataprod/chlor_a.php 25. Layer name: chla_sd_alltime_2005_2012 Description: Chlorophyll-a concentrations obtained from MODIS satellite data. Standard deviation value of each pixel during all months of the period [2005-2012] Value range: 0 - 27.9877 Units: mg/m^3 Source: https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Monthly/9km/chlor_a/ URL: https://modis.gsfc.nasa.gov/data/dataprod/chlor_a.php 26. Layer name: POC_2005_2012_ampli Description: Particulate organic carbon, model Lutz et al. (2007). Amplitude value (difference maximal and minimal value, see previous layers) all seasonal layers [2005-2012] Value range: 0 - 1.31761 Units: g/m^2/d Source: This study. Following Lutz et al. (2007) URL: https://data.aad.gov.au/metadata/records/Particulate_carbon_export_flux_layers Citation: Lutz MJ, Caldeira K, Dunbar RB and Behrenfeld MJ (2007). Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research: Oceans, 112(C10). 27. Layer name: POC_2005_2012_max Description: Particulate organic carbon, model Lutz et al. (2007). Maximal value encountered on each pixel among all seasonal layers [2005-2012] Value range: 0.00332562 - 1.376601 Units: g/m^2/d Source: This study. Following Lutz et al. (2007) URL: https://data.aad.gov.au/metadata/records/Particulate_carbon_export_flux_layers Citation: Lutz MJ, Caldeira K, Dunbar RB and Behrenfeld MJ (2007). Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research: Oceans, 112(C10). 28. Layer name: POC_2005_2012_mean Description: Particulate organic carbon, model Lutz et al. (2007). Mean all seasonal layers [2005-2012] Value range: 0.003184335 - 0.5031364 Units: g/m^2/d Source: This study. Following Lutz et al. (2007) URL: https://data.aad.gov.au/metadata/records/Particulate_carbon_export_flux_layers Citation: Lutz MJ, Caldeira K, Dunbar RB and Behrenfeld MJ (2007). Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research: Oceans, 112(C10). 29. Layer name: POC_2005_2012_min Description: Particulate organic carbon, model Lutz et al. (2007). Minimal value encountered on each pixel among all seasonal layers [2005-2012] Value range: 0.003116508 - 0.1313119 Units: g/m^2/d Source: This study. Following Lutz et al. (2007) URL: https://data.aad.gov.au/metadata/records/Particulate_carbon_export_flux_layers Citation: Lutz MJ, Caldeira K, Dunbar RB and Behrenfeld MJ (2007). Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research: Oceans, 112(C10). 30. Layer name: POC_2005_2012_sd Description: Particulate organic carbon, model Lutz et al. (2007). Standard deviation all seasonal layers [2005-2012] Value range: 3.85E-08 - 0.4417001 Units: g/m^2/d Source: This study. Following Lutz et al. (2007) URL: https://data.aad.gov.au/metadata/records/Particulate_carbon_export_flux_layers Citation: Lutz MJ, Caldeira K, Dunbar RB and Behrenfeld MJ (2007). Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research: Oceans, 112(C10). 31. Layer name: seafloor_oxy_1955_2012_ampli Description: Amplitude (difference maximum-minimum) value encountered for each pixel on all month layers of seafloor oxygen concentration over [1955-2012], modified from WOCE Value range: 0.001755714 - 5.285187 Units: mL/L Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 32. Layer name: seafloor_oxy_1955_2012_max Description: Maximum value encountered for each pixel on all month layers of oxygen concentration over [1955-2012], modified from WOCE Value range: 3.059685 - 11.52433 Units: mL/L Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 33. Layer name: seafloor_oxy_1955_2012_mean Description: Mean seafloor oxygen concentration over [1955-2012] (average of all monthly layers), modified from WOCE Value range: 2.836582 - 8.858084 Units: mL/L Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 34. Layer name: seafloor_oxy_1955_2012_min Description: Minimum value encountered for each pixel on all month layers of seafloor oxygen concentration over [1955-2012], modified from WOCE Value range: 0.4315577 - 8.350794 Units: mL/L Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 35. Layer name: seafloor_oxy_1955_2012_sd Description: Standard deviation seafloor oxygen concentration over [1955-2012] (of all monthly layers), modified from WOCE Value range: 0.000427063 - 1.588707 Units: mL/L Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 36. Layer name: seafloor_sali_2005_2012_ampli Description: Amplitude (difference maximum-minimum) value encountered for each pixel on all month layers of seafloor salinity over [2005-2012], modified from WOCE Value range: 0.000801086 - 4.249901 Units: PSU Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 37. Layer name: seafloor_sali_2005_2012_max Description: Maximum value encountered for each pixel on all month layers of seafloor salinity over [2005-2012], modified from WOCE Value range: 32.90105 - 35.3997 Units: PSU Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 38. Layer name: seafloor_sali_2005_2012_mean Description: Mean seafloor salinity over [2005-2012] (average of all monthly layers), modified from WOCE Value range: 32.51107 - 35.03207 Units: PSU Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 39. Layer name: seafloor_sali_2005_2012_min Description: Minimum value encountered for each pixel on all month layers of seafloor salinity over [2005-2012], modified from WOCE Value range: 29.8904 - 34.97735 Units: PSU Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 40. Layer name: seafloor_sali_2005_2012_sd Description: Standard deviation seafloor salinity over [2005-2012] (of all monthly layers), modified from WOCE Value range: 0.000251834 - 1.36245 Units: PSU Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 41. Layer name: seafloor_temp_2005_2012_ampli Description: Amplitude (difference maximum-minimum) value encountered for each pixel on all month layers of seafloor temperature over [2005-2012], modified from WOCE Value range: 0.0086 - 8.625669 Units: degrees C Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 42. Layer name: seafloor_temp_2005_2012_max Description: Maximum value encountered for each pixel on all month layers of seafloor temperature over [2005-2012], modified from WOCE Value range: -2.021455 - 15.93171 Units: degrees C Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 43. Layer name: seafloor_temp_2005_2012_mean Description: Mean seafloor temperature over [2005-2012] (average of all monthly layers), modified from WOCE Value range: -2.085796 - 13.23161 Units: degrees C Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 44. Layer name: seafloor_temp_2005_2012_min Description: Minimum value encountered for each pixel on all month layers of seafloor temperature over [2005-2012], modified from WOCE Value range: -2.1 - 11.6431 Units: degrees C Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 45. Layer name: seafloor_temp_2005_2012_sd Description: Standard deviation seafloor temperature over [2005-2012] (of all monthly layers), modified from WOCE Value range: 0.002843571 - 2.877084 Units: degrees C Source: Derived from World Ocean Circulation Experiment 2013 URL: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 46. Layer name: extreme_event_max_chl_2005_2012_ampli Description: Amplitude (difference maximum-minimum) number of the number of extreme events calculated between 2005 and 2012 Value range: integer values 0 - 3 Units: unitless Source: derived from chlorophyll-a concentration layers 47. Layer name: extreme_event_max_chl_2005_2012_max Description: Maximum number of extreme events calculated between 2005 and 2012 Value range: integer values 0 - 5 Units: unitless Source: derived from chlorophyll-a concentration layers 48. Layer name: extreme_event_max_chl_2005_2012_mean Description: Mean of the number of extreme events calculated between 2005 and 2012 Value range: 0 - 3.875 Units: unitless Source: derived from chlorophyll-a concentration layers 49. Layer name: extreme_event_max_chl_2005_2012_min Description: Minimum number of extreme events calculated between 2005 and 2012 Value range: integer values 0 - 5 Units: unitless Source: derived from chlorophyll-a concentration layers 50. Layer name: extreme_event_min_chl_2005_2012_ampli Description: Amplitude (difference maximum-minimum) number of the number of extreme events calculated between 2005 and 2012 Value range: integer values 0 - 9 Units: unitless Source: derived from chlorophyll-a concentration layers 51. Layer name: extreme_event_min_chl_2005_2012_max Description: Maximum number of extreme events calculated between 2005 and 2012 Value range: integer values 0 - 11 Units: unitless Source: derived from chlorophyll-a concentration layers 52. Layer name: extreme_event_min_chl_2005_2012_mean Description: Mean of the number of extreme events calculated between 2005 and 2012 Value range: 0 - 11 Units: unitless Source: derived from chlorophyll-a concentration layers 53. Layer name: extreme_event_min_chl_2005_2012_min Description: Minimum number of extreme events calculated between 2005 and 2012 Value range: integer values 0 - 11 Units: unitless Source: derived from chlorophyll-a concentration layers 54. Layer name: extreme_event_min_oxy_1955_2012_nb Description: Number of extreme events (minimal seafloor oxygen concentration records) that happened between January and December of the year Value range: integer values 0 - 12 Units: per year Source: derived from seafloor oxygen concentration layers 55. Layer name: extreme_event_max_sali_2005_2012_nb Description: Number of extreme events (maximal seafloor salinity records) that happened between January and December of the year Value range: integer values 0 - 12 Units: per year Source: derived from seafloor salinity layers 56. Layer name: extreme_event_min_sali_2005_2012_nb Description: Number of extreme events (minimal seafloor salinity records) that happened between January and December of the year Value range: integer values 0 - 12 Units: per year Source: derived from seafloor salinity layers 57. Layer name: extreme_event_max_temp_2005_2012_nb Description: Number of extreme events (maximal seafloor temperature records) that happened between January and December of the year Value range: integer values 0 - 12 Units: per year Source: derived from seafloor temperature layers 58. Layer name: extreme_event_min_temp_2005_2012_nb Description: Number of extreme events (minimal seafloor temperature records) that happened between January and December of the year Value range: integer values 0 - 12 Units: per year Source: derived from seafloor temperature layers

  • Overview of the project and objectives: To investigate whether the Nitrogen - Silicon - Carbon biogeochemical system functions in the Antarctic Marginal Ice Zone and shows spatial variability possibly induced by varying availability of Fe and other parameters in the region. This toolbox is part of project 4051 - samples were taken (1) on the same sea-ice site or very close than the one used for Trace Metal sampling; (2) via Trace Metal Rosette TMR; (3) via Conductivity Temperature and Depth CTD Rosette. It is also part of project 4073 since some intercalibration studies were conducted in collaboration with the primary production team. Three main tools were used which can be either independently or intricately studied. For this reason the complete set of sampling done for this stable isotope toolbox is summarized in one excel file which is duplicated and attached to three child metadata records. Same reasoning for raw data acquired on boar and on field information. This parent metadata record has thus three child metadata records. Each of the child metadata files explain individually the different approaches which were treated together by the same team to resolve the main question of sea-ice biogeochemical system functioning via the use of stable isotope ratio tools. The details of each are in the respective metadata records. The data are attached to this metadata record. METADATA FILES are: - 13C, 15N, 30Si in-situ incubation experiments during SIPEX 2 - Nitrogen and oxygen isotopic composition of nitrate during SIPEX 2 - Delta13C signal of brassicasterol and cholesterol in the Antarctic Sea-ice / Is there particulate barium in sea-ice?

  • The Southern Ocean is one the most significant regions on earth for regulating the build up of anthropogenic CO2 in the atmosphere, and the capacity for carbon uptake in the region could be altered by climate change. The project aims to establish a time series of anthropogenic carbon accumulation. The work will be used to identify processes regulating the CO2 uptake and to test models that predict future uptake. These data were collected on the VMS voyage of the Aurora Australis in the 2010-2011 field season. Data include pH, carbon dioxide, alkalinity and spectrometer data.

  • These POC export flux maps (units of g C. m-2 day-1) were compiled from Lutz et al. (2007) algorithm, following Woolley et al. (2016) procedure. They were produced after calculation of the Seasonal Variation Index of Net Primary Production layers (NPP, g C. m-2 day-1, see Lutz et al. 2007 for the methodology) available on a monthly basis at http://www.science.oregonstate.edu/ocean.productivity/custom.php (accessed on April 05, 2017). NPP layers are derivates of the Carbon-based Productivity Model that integrates several compounds such as satellite data color measurements, photosynthetically active radiation values or mix layer and nitrocline depth estimations (Westberry et al. 2008). Bathymetric layers used for the calculation were derived from Fabry-Ruiz et al. (submitted paper).

  • Coccolithophore fluxes were investigated over a one-year period at two sites of the Subantarctic Zone in the Australian and New Zealand Sectors of the Southern Ocean. The samples from the Australian SAZ were retrieved at the SOTS observatory, which lies in the SAZ (near 47°S, 142°E), approximately 500 km south west of Tasmania. SOTS was instrumented with three moored platforms: (i) a surface tower buoy that performs meteorological measurements (the Southern Ocean Flux Station - SOFS); (ii) a surface mixed layer mooring equipped with an automated water sampler) and nutrient, carbon and biological measurement sensors (the Pulse mooring); and (iii) a bottom-tethered deep sediment trap mooring that collects sinking particle fluxes for diverse biogeochemical studies (the SAZ mooring). The samples from New Zealand came from the deep-ocean SAM mooring deployed in Subantarctic waters south east of New Zealand (46°40’S, 178’ 30°E), and was equipped with sediment traps and a suite of sensors. Here, we report the coccolith sinking assemblages captured by sediment traps at ~1000, 2000 and 3800 m depth for a year from August 2011 until July 2012 at the SOTS observatory and a sediment trap at ~1500 m depth for a year from November 2009 until October 2010 at the SAM site. A description of the field experiment, sample treatment, determination of total CaCO3 content, and estimation of coccolith and coccosphere fluxes can be found in Rigual-Hernández et al. (2020a) and Rigual-Hernández et al. (2020b). Data available: two excel files (one for each station) containing sampling dates and depths, relative abundance of coccolith sinking assemblages, and coccolith, coccosphere and total CaCO3 fluxes. Detailed information of the column headings is provided below. Cup – Cup (=sample) number Depth – vertical location of the sediment trap in meters below the surface Mid-point date - Mid date of the sampling interval Duration (days) – number of days the cup was open

  • Five (out of a possible 7) ice stations were sampled for the Main Biology Site, collected from -63.88S 119.9E off East Antarctic in September to November 2012 during the Sea Ice Physics and Ecosystems eXperiment (SIPEX) II. Sampled pack ice floes were several 100 meters to several kilometres apart, and indicated variation in the degrees of physical deformation and biological characteristics. The sampled sites were selected on each floe due to low snow cover disturbances, were level, and free from surface deformations (limited rafting). For the production and carbon allocation dataset, the bottom 2 cm of 3 x 5 - 8 (dependant on level of biomass) cores were collected and combined within a 4 m grid using a 9 cm diameter SIPRE corer. Biology was isolated from the ice by gently mixing with 0.22 micron filtered sea water collected from the site with a Niskin bottle, and pass through a sieve. The liquid was then analysed for bacterial and algae productivity. The corresponding dataset (P:\Data\ Copy of SIPEX C14_Ugalde_Raw Data_St 8) describes data (expressed in disintegrations per minute) directly input into an excel file from the scintillation counter measured on board the Aurora Australis. The additional dataset (P:\Data\ SIPEX C14_Chloro_SIPEXII_Updated to Station 8) describes data directly input into an excel file of volume filtered for chlorophyll analysis (expressed in mls) of both the ice and liquid fraction. For the Main Biology dataset, 6 cores were taken from the same site: Core 1: temperature profile Core 2: nutrients, extracellular polymeric substances Core 3 and 4: chlorophyll, pigments (HPLC), bacteria and cell counts Core 5: particulate organic carbon/nitrogen, dissolved organic carbon Each core was sectioned from the ice-water interface at 0 - 2 cm, 2 - 10 cm, and then the remaining core was quartered. Core 1 was discarded after the temperature profile was taken. Core 3 and 4 were slow-melted in at 6 degrees cold room with 0.22 micron filtered sea water collected from the site as above (200 ml per cm ice). Cores 2 and 5 were slow-melted as above without the addition of filtered sea water. Additional measurements included 5 replicates of snow thickness and freeboard level. After melting, samples were taken/filtered for the parameters above within 12 hours of melting. The corresponding dataset (P:\Data\Data Updated to Station 8\ Main Bio Data Sheet_SIPEX II_Updated to Station 8) describes descriptive and quantitative parameters of the above cores, directly input into a spreadsheet.

  • This data set contains primary productivity, pulse amplitude modulated fluorometry, and nutrient drawdown numbers associated with the abstract presented below. 14C Primary Productivity Gross column-integrated primary productivity determined through measurement of NaH14CO3 uptake by phytoplankton (1 hour incubations). Primary productivity was modelled from photosynthesis v irradiance curves, chlorophyll profiles, photosynthetically active radiation, and vertical light attenuation. Data for these parameters are also shown. Nutrient Draw-down Data Seasonal depletion of oxidised inorganic nitrogen and silicate in the mixed layer, and production of oxygen. Data was calculated by the subtraction of mixed layer concentrations (uM) from values below the mixed layer. Pulse Amplitude Modulated Fluorometry Data Fv/Fm values determined using pulse amplitude modulated fluorometry (PAM). Samples were dark-adapted prior to measurement so that non-photochemical quenching was relaxed. Values provide an indication of cell health. Abstract Primary productivity was measured in the Indian Sector of the Southern Ocean (30 degrees to 80 degrees E) as part of a multi-disciplinary study during austral summer; Baseline Research on Oceanography, Krill and the Environment, West (BROKE-West Survey, 2006). Gross integrated (0-150 m) productivity rates within the marginal ice zone (MIZ) were significantly higher than within the open ocean, with averages of 2110.2 plus or minus 1347.1 and 595.0 plus or minus 283.0 mg C m-2 d-1, respectively. In the MIZ, high productivity was associated with shallow mixed layer depths and increased Pmax up to 5.158 mg C (mg chl a)-1 h-1. High Si:N drawdown ratios in the open ocean (4.1 plus or minus 1.5) compared to the MIZ (2.2 plus or minus 0.79) also suggested that iron limitation was important for the control of productivity. This was supported by higher Fv/Fm ratios in the MIZ (0.50 plus or minus 0.11 above 40 m) compared to the open ocean (0.36 plus or minus 0.08). As well, in the open ocean there were regions of elevated productivity associated with the seasonal pycnocline where iron availability was possibly increased. High silicate drawdown in the north-eastern section of the BROKE-West survey area suggested significant diatom growth and was linked to the presence of the southern Antarctic Circumpolar Current front (sACCF). However, low assimilation numbers (12.8 to 23.2 mg C mg chl a-1 d-1) and Fv/Fm ratios indicated that cells were senescent with initial growth occurring earlier in the season. In the western section of the survey area within the MIZ, high NO3 drawdown but relatively low silicate drawdown were associated with a Phaeocystis bloom. NO3 concentrations were strongly negatively correlated with column-integrated productivity and chlorophyll biomass which was expected given the requirement for this nutrient by all phytoplankton groups. Regardless, concentrations of both NO3 and silicate were above limiting levels within the entire BROKE-West survey area (N greater than 15.7 micro M, Si greater than 18.3 micro M) supporting the high nutrient low chlorophyll status of the Southern Ocean.