Keyword

EARTH SCIENCE > OCEANS > MARINE SEDIMENTS > SEDIMENTATION

28 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 28
  • Oceanographic processes in the subantarctic region contribute crucially to the physical and biogeochemical aspects of the global climate system. To explore and quantify these contributions, the Antarctic Cooperative Research Centre (CRC) organised the SAZ Project, a multidisciplinary, multiship investigation carried out south of Australia in the austral summer of 1997-1998. Taken from the abstracts of the referenced papers: The SAZ project organised by the Antarctic CRC has a continuing program of moored sinking particle trap studies in the Aub-Antarctic and Polar Frontal zones southwest of Tasmania along 140 degrees E. The first deployment obtained weekly or higher resolution samples through the austral summer from September 1997 through February 1998 at three locations: the central Sub-Antarctic Zone (47 degrees S, traps at 1000, 2000 and 3800 m depth), the Sub-Antarctic Front (51 degrees S, 1 trap at 3300 m) and above the Southeast Indian Ridge in the Polar Frontal Zone (54 degrees S, 2 traps at 800 and 1500 m). The particles were analysed for total mass, inorganic carbon, total carbon, nitrogen, silicon, and aluminium. Hence values for organic carbon, biogenic silica, and lithogenics were obtained, and the mass fluxes calculated. This report details the sites, moorings, data from the current meters and sediment traps, and results of analyses performed on the collected sediment trap material. Sediment trap moorings were deployed from September 21, 1997 through February 21, 1998 at three locations south of Australia along 140 degrees E: at -47 degrees S in the central Subantarctic Zone (SAZ) with traps at 1060, 2050, and 3850 m depth, at-51 degrees S in the Subantarctic Front with one trap at 3080m, and at -54 degrees S in the Polar Front Zone(PFZ) with traps at 830 and 1580m. Particle fluxes were high at all the sites (18-32gm-2 yr-1 total mass and 0.5-1.4g organic carbon m-2 yr-1 at ~1000m, assuming minimal flux outside the sampled summer period). These values are similar to other Southern Ocean results and to the median estimated for the global ocean by Lampitt and Antia [1997], and emphasise that the Southern Ocean exports considerable carbon to the deep sea despite its "high-nutrient, low chlorophyll" characteristics. The SAZ site was dominated by carbonate (greater than 50% of total mass) and the PFZ site by biogenic silica (greater than 50% of total mass). Both sites exhibited high export in spring and late summer, with an intervening low flux period in December. For the 153 day collection period, particulate organic carbon export was somewhat higher in all the traps in the SAZ (range 0.57-0.84 gC m -L) than in the PFZ (range 0.31-0.53), with an intermediate value observed at the SAF (0.60). The fraction of surface organic carbon export (estimated from seasonal nutrient depletion, Lourey and Trull [2001]) reaching 1000 m was indistinguishable in the SAZ and PFZ, despite different algal communities.

  • Please also see the child records of this project for access to data. Attached to this record are the originally supplied datasets for 1997-1998, and also summary files and mooring diagrams supplied in 2012. Taken from the 2008-2009 Progress Report: Progress against objectives: The key to advancing the objective of understanding ocean processes controlling uptake of atmospheric CO2 is the ability to deploy moored autonomous samplers and sensors in Southern Ocean surface waters capable of quantifying seasonal cycles in biological and biogeochemical processes. Our effort in the last 12 months has focused on development of a robust mooring platform to carry these devices. We deployed two different engineering test designs, known as Pulse 5 Heavy and Pulse 5 Light. Both designs survived 6 months in the sea, including wave heights up to 12 meters, while transmitting mooring tensions, mooring accelerations, and GPS positions live to the internet (www.imos.org.au). Following this success we are preparing to deploy the next version of Pulse with scientific instruments to measure temperature, salinity, oxygen, and phytoplankton fluorescence. In addition we deployed a deep ocean mooring with time-series sediment traps to quantify sinking particle fluxes, and in-situ settling columns to determine particle sinking rates. Taken from the 2009/2010 Progress Report: Progress against objectives: Two voyages were awarded by the Australian Marine National Facility to use RV Southern Surveyor to service these Southern Ocean Time Series (SOTS) moorings in the 2009/10 season, and for this reason the shiptime awarded to this project by AAS was not needed and was relinquished. This arrangement will continue in 2010/11 for which the MNF has again awarded two voyages in September 2010 and April 2011. The fieldwork in 2009/10 was very successful: i) the SAZ deep sediment trap mooring was recovered in September 2009 and redeployed for recovery in September 2010. ii) the PULSE biogeochemistry mooring was deployed in September 2009 and functioned beautifully prior to recovery in March 2010 for servicing. It will be redeployed in September 2010. iii) the SOFS Southern Ocean Flux Station mooring was completed and deployed in March 2010 for recovery in April 2011, and redeployment in September 2011.

  • Data repository for the paper: "The roles of sea-ice, light and sedimentation in structuring shallow Antarctic benthic communities" Graeme F. Clark, Jonathan S. Stark, Anne S. Palmer, Martin J. Riddle, Emma L. Johnston. PLoS ONE Data are boulder communities (epifauna), annual light budgets, and sediment traps. See the paper for more details. ABSTRACT On polar coasts, seasonal sea-ice duration strongly influences shallow marine environments by affecting environmental conditions, such as light, sedimentation, and physical disturbance. Sea-ice dynamics are changing in response to climate, but there is limited understanding of how this might affect shallow marine environments and benthos. Here we present a unique set of physical and biological data from a single region of Antarctic coast, and use it to gain insights into factors shaping polar benthic communities. At sites encompassing a gradient of sea-ice duration, we measured temporal and spatial variation in light and sedimentation and hard-substrate communities at different depths and substrate orientations. Biological trends were highly correlated with sea-ice duration, and appear to be driven by opposing gradients in light and sedimentation. As sea-ice duration decreased, there was increased light and reduced sedimentation, and concurrent shifts in community structure from invertebrate to algal dominance. Trends were strongest on shallower, horizontal surfaces, which are most exposed to light and sedimentation. Depth and substrate orientation appear to mediate exposure of benthos to these factors, thereby tempering effects of sea-ice and increasing biological heterogeneity. However, while light and sedimentation both varied spatially with sea-ice, their dynamics differed temporally. Light was sensitive to the site-specific date of sea-ice breakout, whereas sedimentation fluctuated at a regional scale coincident with the summer phytoplankton bloom. Sea-ice duration is clearly the overarching force structuring these shallow Antarctic benthic communities, but direct effects are imposed via light and sedimentation, and mediated by habitat characteristics. Data files: Boulder_community_data.csv - Percentage cover data for sessile organisms (invertebrates and algae) growing on boulder surfaces. - Columns 1 to 5 are sample attributes, columns 6 to 57 are measured variables (species or bare space). Light_budget_data.csv - Annual light budgets at each site, recorded by light metres. - Columns are site name and annual light budget (mol photons m-2 year-1) Sediment_trap_data.csv - Total sediment collected in sediment traps - Columns are site label, position in bay, replicate, dates deployed and retrieved, and the calculated sediment flux (g m-2 d-1)

  • AM01 borehole drilled January 2002. Partial annual data retrieved for 2002, and 2003. AM01b borehole drilled mid-December 2003. No new thermistor strings deployed. Consult Readme file for detail of data files and formats. New data and readme added July 2006.

  • AM03 borehole drilled December 2005. Consult Readme file for detail of data files and formats. 2011-2012 data may be final data from the unit owing to battery failure. The original project for this dataset was ASAC 1164, but recent data fall under the auspices of project AAS 4096.

  • AM04 borehole drilled January 2006. Consult Readme file for detail of data files and formats. 2011-2012 data may be final data from the unit owing to battery failure. The original project for this dataset was ASAC 1164, but recent data fall under the auspices of project AAS 4096.

  • AM05 borehole drilled December 2009. Profiling measurements conducted to test borehole diameter integrity.

  • Metadata record for data expected from ASAC Project 2915 See the link below for public details on this project. Petroleum contamination poses a major threat to Antarctic and subantarctic ecosystems because diesel and lubricants are persistent and, at poorly defined concentrations, are toxic in marine environments. This project will asses how quickly important components in these products are naturally depleted using a model field experiment. We will identify and quantify the non-degrading portions of the fuels, and assess the longevity and rate of removal of these. We will relate the chemical analysis data with biological data on organisms in the sea-bottom sediments, in order to assess which components of the fuels do most harm to the organisms. Project objectives: The overall objective is to better understand the long-term environmental impact of spilled petroleum products in Antarctic marine systems. Decades of Antarctic exploration have left a significant legacy of petroleum pollution on-land and in nearshore marine environments, particularly around human stations. The natural attenuation of spilled diesel and lubricants occurs slowly in cold climates, particularly once the pollutants have adsorbed onto marine sediments. Major programmes funded by the AAD have identified the location of spills, and the nature and fate of some of the pollutants. This project will address some of the significant uncertainties which still exist regarding the natural depletion and ecotoxicological impact of spilled diesel and lubricants in the marine environment. A new PhD student at Macquarie University will carry-out much of this work, in collaboration with the CI and investigators. The specific objectives are: 1. To develop a quantitative method using cutting edge two-dimensional gas chromatography-mass spectrometry (GCxGC-TOFMS) to identify the components of spilled diesel and lubricants, especially the complex mixtures of recalcitrant residues and the secondary products of alteration. 2. To calculate the rates of removal of pollutants in the marine environment by comprehensive statistical treatment of the chemical data-set, and to assess the processes by which this removal occurs (e.g. aerobic/anaerobic biodegradation, water-washing, etc). 3. To assess the degradation rates and longevity of pollutant components against the biology of the disturbed communities of microbes and microfauna in the same experiments, so as to form a hypothesis of which components of the complex mixtures have the most important ecotoxicological response and environment impact. 4. Using the most important single isolated or related groups of components, to test the specific ecotoxicological impact of each in the marine environment using a short-term field experiment and laboratory toxicity tests. Taken from the 2008-2009 Progress Report: Progress against objectives: 1. A GCxGC-FID was installed at Macquarie University. No TOFMS has been purchased yet, due to non-funding of ARC Lief grant application. No further progress made towards this objective. 2. We have a comprehensive dataset now of the rates of removal of hydrocarbon components of SAB from the SRE4 experiment. Detailed GC-MS has been carried out so as to track removal of components in much more detail than can be achieved by GC-FID alone. TPH data have been calculated. The data has been utilised in the draft of one paper by Shane Powell (Powell, Stark, Snape, Woolfenden, Bowman, Riddle; Effects of diesel and lubricant oils on Antarctic benthic microbial communities over five years) which has not been submitted yet, and in an early draft of a paper by PhD student Ellen Woolfenden (E. N. M. Woolfenden, G. Hince, S. Powell, S. Stark, J. Stark, I. Snape, S. George; Effects of diesel and lubricant oils on Antarctic benthic microbial communities over five years). 3. This has partly been done, and is being written up by the Powell et al. paper referred to above. Detailed analysis of which are the most toxic compounds of SAB awaits further work-up of the data. 4. The field season to carry out this test was postponed from 08/09 to 09/10. Taken from the 2009-2010 Progress Report: Progress against objectives: 1. An ARC LIEF grant application was successful and a TOFMS will be purchased from the funds gained in mid 2010. 2. So far the 0-1cm of 10cm cores of marine sediment spiked with Biodegradable lubricant, used lubricant, clean lubricant and Special Antarctic Blend (SAB) diesel have been analysed by gas chromatography coupled to a flame ionisation detector (GC-FID). Analyses by GC-FID allowed the Total Petroleum Hydrocarbon (TPH) concentration at each sample time to be calculated from statistical analysis. Further analyses were performed on the SAB sediments extractions by GC-MS (mass spectrometry). The chromatograms of the extractions were compared with chromatograms of standard mixtures of compounds and a compound identification library and thus, peaks were identified. From this peak identification, degradation patterns of compounds and groups of compounds could be seen; naphthalenes degrade less readily with increasing methyl groups but still degrade more readily than n-alkanes. From the analyses of the 0-1cm sediment extractions the most recalcitrant compounds were (adamantanes and diamantanes) and the most water soluble compounds were (naphthalenes and alkylnaphthalenes) in SAB diesel. The data has been written up in a draft paper by PhD student Ellen Woolfenden (E. N. M. Woolfenden, G. Hince, S. Powell, S. Stark, J. Stark, I. Snape, S. George; Effects of diesel and lubricant oils on Antarctic benthic microbial communities over five years). This paper will be submitted by May 2010. We also have started analysing the depth profiles for SAB in the SRE4 experiment. It is interesting to know as to whether any biodegradation patterns will be seen in the 1-10 cm depths of the sediment. Therefore the cores have been sectioned into 1 cm intervals and extracted at AAD. The extractions are awaiting analysis by GC-FID initially and GC-MS for further analysis. 3. This has partly been done, and is being written up by a Shane Powell et al. paper, that has not been published yet. Detailed analysis of which are the most toxic compounds of SAB awaits further work-up of the data. 4. The field season to carry out this test was carried out by Ellen Woolfenden in fieldseason 09/10. Samples have been collected and are stored at AAD. Marine sediment was collected and different portions were spiked with certain compounds from each of these groups as well as a selection of n-alkanes and SAB diesel as a comparison. These sediments have been extracted and are awaiting analysis by GC-MS to identify which of the compounds are depleted most readily within the experimental groups without the influence of other compounds present in SAB diesel. Ellen will be analysing them later in 2010. The dataset provided by Ellen Woolfenden contain a number of excel spreadsheets, as well as a word document providing further information about the data.

  • Particulates in the water were concentrated onto 25mm glass fibre filters. Light transmission and reflection through the filters was measured using a spectrophotometer to yield spectral absorption coefficients. Data Acquisition: Water samples were taken from Niskin bottles mounted on the CTD rosette. Two or three depths were selected at each station, using the CTD fluorometer profile to identify the depth of maximum fluorescence and below the fluorescence maximum. One sample was always taken at 10m, provided water was available, as a reference depth for comparisons with satellite data (remote sensing international standard). Water sampling was carried out after other groups, leading to a considerable time delay of between half an hour and 3 hours, during which particulates are likely to have sedimented within the Niskin bottle, and algae photoadapted to the dark. In order to minimise problems of sedimentation, as large a sample as practical was taken. Often so little water remained in the Niskin bottle that the entire remnant was taken. Where less than one litre remained, leftover sample water was taken from the HPLC group. Water samples were filtered through 25mm diameter GF/F filters under a low vacuum (less than 5mmHg), in the dark. Filters were stored in tissue capsules in liquid nitrogen and transported to the lab for analysis after the cruise. Three water samples were filtered through GF/F filters under gravity, with 2 30ml pre-rinses to remove organic substances from the filter, and brought to the laboratory for further filtration through 0.2micron membrane filters. Filters were analysed in batches of 3 to 7, with all depths at each station being analysed within the same batch to ensure comparability. Filters were removed one batch at a time and place on ice in the dark. Once defrosted, the filters were placed upon a drop of filtered seawater in a clean petri dish and returned to cold, dark conditions. One by one, the filters were placed on a clean glass plate and scanned from 200 to 900nm in a spectrophotometer equipped with an integrating sphere. A fresh baseline was taken with each new batch using 2 blank filters from the same batch as the sample filters, soaked in filtered seawater. After scanning, the filters were placed on a filtration manifold, soaked in methanol for between 1 and 2 hours to extract pigments, and rinsed with filtered seawater. They were then scanned again against blanks soaked in methanol and rinsed in filtered seawater. Data Processing: The initial scan of total particulate matter, ap, and the second scan of non-pigmented particles, anp, were corrected for baseline wandering by setting the near-infrared absorption to zero. This technique requires correction for enhanced scattering within the filter, which has been reported to vary with species. One dilution series was carried out at station 118 to allow calculation of the correction (beta-factor). Since it is debatable whether this factor will be applicable to all samples, no correction has been applied to the dataset. Potential users should contact JSchwarz for advice on this matter when using the data quantitatively. Not yet complete: Comparison of the beta-factor calculated for station 118 with the literature values. Comparison of phytoplankton populations from station 118 with those found at other stations to evaluate the applicability of the beta-factor. Dataset Format: Two files: phyto_absorp_brokew.txt and phyto_absorp_brokew_2.txt: covering stations 4 to 90 and 91 to 118, respectively. Note that not every station was sampled. File format: Matlab-readable ascii text with 3 'header' lines: Row 1: col.1=-999, col.2 to end = ctd number Row 2: col.1=-999, col.2 to end = sample depth in metres Row 3: col.1=-999, col.2 to end = 1 for total absorption by particulates, 2 for absorption by non-pigmented particles Row 4 to end: col.1=wavelength in nanometres, col.2 to end = absorption coefficient corresponding to station, depth and type given in rows 1 to 3 of the same column. This work was completed as part of ASAC projects 2655 and 2679 (ASAC_2655, ASAC_2679).

  • AM04 borehole drilled January 2006. Profiling measurements conducted to test borehole diameter integrity.