From 1 - 3 / 3
  • This dataset comprises of an excel spreadsheet of data collected on the CLIVAR-SR3 cruise in November to December 2001. The spreadsheet contains plankton and carbon data. From the abstract of the referenced publication: Variations of phytoplankton assemblages were studied in November-December 2001, in surface waters of the Southern Ocean along a transect between the Sub-Antarctic Zone (SAZ) and the Seasonal Ice Zone (SIZ; 46.9-64.9 degrees S; 142-143 degrees E; CLIVAR-SR3 cruise). Two regions had characteristic but different phytoplankton assemblages. Nanoflagellates (less than 20 microns) and pico-plankton (~2 microns) occurred in similar concentrations along the transect, but were dominant in the SAZ, Sub-Antarctic Front (SAF), Polar Front Zone (PFZ) and the Inter-Polar Front Zone (IPFZ), (46.9-56.9 degrees S). Along the entire transect their average cell numbers in the upper 70 m of water column, varied from 300,000 to 1,100,000 cells per litre. Larger cells (greater than 20 microns), diatoms and dinoflagellates, were more abundant in the Antarctic Zone-South (AZ-S) and the SIZ (60.9-64.9 degrees S). In AZ-S and SIZ diatoms ranged between 270,000 and 1,200,000 cells per litre, dinoflagellates from 31,000 to 102,000 cells per litre. A diatom bloom was in progress in the AZ-S showing a peak of 1,800,000 cells per litre. Diatoms were dominated by Pseudo-nitzschia spp., Fragilariopsis spp., and Chaetoceros spp. Pseudo-nitzschia spp. outnumbered other diatoms in the AZ-S. Fragilariopsis spp. were most numerous in the SIZ. Dinoflagellates contained autotrophs (eg Prorocentrum) and heterotrophs (Gyrodinium/Gymnodinium, Protoperidinium). Diatoms and dinoflagellates contributed most to the cellular carbon: 11-25 and 17-124 micrograms of carbon per litre, respectively. Small cells dominated in the northern region characterised by the lowest N-uptake and new production of the transect. Larger diatom cells were prevalent in the southern area with higher values of N-uptake and new production. Diatom and nanoflagellate cellular carbon contents were highly correlated with one another, with primary production, and productivity related parameters. They contributed up to 75% to the total autotrophic C biomass. Diatom carbon content was significantly correlated to nitrate uptake and particle export, but not to ammonium uptake, while flagellate carbon was well correlated to ammonium uptake, but not to export. Diatoms have contributed highly to particle export along the latitudinal transect, while flagellates played a minor role in the export. This work was completed as part of ASAC project 1343 (ASAC_1343). The fields in this dataset are: Station (depth, position, date, comments) Species Cells per millilitre cell carbon - micrograms per litre

  • Metadata record for data from ASAC Project 288 See the link below for public details on this project. From the abstract of the referenced paper: In January-February 1991, in Prydz Bay, phytoplankton bloom was evident in the inner shelf area with the dominant diatoms being represented mainly by pennate species of the Nitzschia-Fragilariopsis group. Dinoflagellates and naked flagellates were most abundant in the centre of the bay; however, larger heterotrophic species prevailed at the southern stations. Cell carbon values (average 317 micro grams per litre; range 92-1048 micrograms per litre) found in the bloom in the south were chiefly due to pennate diatoms and larger heterotrophic dinoflagellates. Much lower carbon values (average 51 micro grams per litre; range 7-147 micro grams per litre) in the outer shelf region were mainliy contributed by large centric diatoms (70-110 micro metres) and small dinoflagellates (5-25 micro metres). Wide ranges of algal cell sizes were observed in both southern and northern communities; the overlapping of sizes of diatoms and flagellates, the latter containing heterotrophs, suggested complex trophic relationships within the plankton and an enhanced heterotrophic activity in the south. North-to-south variations in surface delta 13 C of suspended particulate organic matter (SPOM), (range -31.85 to -20.12 parts per thousand) were directly related to the concentration of particulate matter: this suggested the effect of biomass, and thus of dissolved CO2 limitation on carbon fractionation. Three types of species assemblages were distinguished, corresponding to different narrow ranges of delta 13 C values (-20.12 to -22.37 parts per thousand; -24.50 to -26.65 parts per thousand; -29.73 to -31.85 parts per thousand); dominant species within each assemblage are the likely major determinants of the carbon isotopic composition and variation of SPOM. Pennate diatoms, such as Nitzschia curta and N. subcurvata appear to have made the major imprint on the highest delta 13 C values. Phaeocystis, naked flagellates, autotrophic dinoflagellates and centric diatoms are likely to have caused the lower delta 13 C values of SPOM. It appears that variations in both biomass concentration and in phytoplankton species composition have contributed to the carbon isotopic values of SPOM in Prydz Bay.

  • 3 litres of seawater were collected every 2nd CTD (conductivity, temperature and depth) cast on every CTD transect of the BROKE-West voyage. 7 CTD transects were completed on the BROKE-West voyage, all on southwards legs. Samples were collected at 6 depths in the top 200 m of the water column using niskin bottles. 2 litres were filtered through polycarbonate filters and 1 litre was filtered through a fibreglass filter. Chemical digestion of the polycarbonate filter enabled us to determine the particulate silicon concentration for each sample (using the nutrient autoanalyser onboard the Aurora Australis, see hydrochemistry section), fibreglass filters have been dried and stored for CHN analysis back on shore. This work was completed as part of ASAC projects 2655 and 2679 (ASAC_2655, ASAC_2679).