Keyword

EARTH SCIENCE > BIOSPHERE > ECOLOGICAL DYNAMICS > ECOSYSTEM FUNCTIONS > PHOTOSYNTHESIS

8 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 8 / 8
  • Three experiments were performed at Davis Station, East Antarctica, 77 degrees 58' E, 68 degrees 35' S to determine the effects of ocean acidification on natural assemblages of Antarctica marine microbes (bacteria, viruses, phytoplankton and protozoa). Incubation tanks (6 * 650 L minicosms) were filled on the 30/12/08, 20/01/09 and 09/02/09 with sea water that was filtered through 200 microns mesh to remove metazoan grazers. The pH of each tank was adjusted by adding calculated amounts of CO2 saturated sea water. Treatment concentrations were maintained daily and microbial communities incubated for up to 12 days. The three experiments spanned early-, mid- and late-summer, with CO2 treatments ranging from pre-industrial to post-2100. The Excel spreadsheet contains 3 tabs: Experiment 1 - Early Summer Experiment 2 - Mid Summer Experiment 3 - Late Summer Within each tab there are measurements for: pCO2, dissolved inorganic carbon, Pmax, alpha, Ek, chl a, gross primary production (14C), bacterial production (14C), cell-specific bacterial productivity, bacterial abundance, dissolved organic carbon, particulate organic carbon, heterotrophic nanoflagellates, nitrate+nitrite, phosphate, silicate, ammonium, net community production, respiration, gross primary production (O2), photosynthesis:respiration ratios. Units for each measurement supplied within. Please see the following paper for interpretation of this data: Westwood, K.J., Thomson, P.G., van den Enden, R., Maher, L., Wright, S.W., Davidson, A.T. (2018). Ocean acidification impacts primary and bacterial production in Antarctic coastal waters during austral summer. Journal of Experimental Marine Biology and Ecology 498: 46-60, doi: 10.1016/j.jembe.2017.11.003.

  • Fast repetition rate fluorometer (FRRF) study of sea ice algae in low iron conditions. Algae were grown in an ice tank and the measurements were made at the end with a Chelsea Insrtuments FRRF. Materials and Methods (see the download document for original formatting and formulas) 1. Ice tank incubation The polar pennate diatom Fragilariopsis cylindrus, isolated from Antarctic pack ice in 2015 (Davis station, East Antarctica) was incubated in a purpose designed ice tank (Island Research, Tasmania). The ice tank, which was contructed of titanium to minimise dissolved Fe, was placed into a freezer (–20 degrees C), and the ice thickness and temperature gradient controlled by interaction between a basal heater and the adjustable ambient freezer temperature (see Kennedy et al., 2012). This enabled an ice thickness of approximately 5.5 cm to be maintained during the experiment. The diatom F. cylindrus was incubated in Aquil media (Price et al. 1989) buffered with ethylenediaminetetraacetic acid (EDTA) at 150 micro mol photons m−2 s−1 (PAR), a salinity of 35, and a Fe concentration of 400 nM, where the concentration of total inorganic forms of Fe (Fe') was 1.54 nM, this being continuously supplied to the medium and the exact value calculated using the software Visual MINTEQ, ver. 3.1 (https://vminteq.lwr.kth.se). Before a freezing cycle started, the seawater temperature was maintained at 2.5 degrees C, and a sample was obtained to assess the original physiological state of the algae (Day−5, hereafter). After obtaining the sample, the seawater temperature was set to −1.8 degrees C to initiate ice formation in the ice tank. Once ice had formed at Day−2, the under-ice seawater was partially replaced with ultrapure water to reduce the salinity down to 35, because the salinity had increased (to approximately 38) as a result of brine rejection from the ice. After a 2-day acclimation to the new salinity, ice samples were obtained every 5 days for 20 days (i.e., Days 0, 5, 10, 15, and 20). To minimize the heterogeneity among ice cores, ice samples were randomly collected from the tank chamber with a trace metal-free hand drill (2 cm in diameter) from randomly annotated grids on the ice surface, following normal random sampling numbers generated by the software R (https://www.r-project.org/). To assess the effects of melting and high light exposure, the ice was melted at 2.5 degrees C for 2 days. After the ice had completely melted, the seawater was exposed to a high light level, which was adjusted to represent the likely summer light intensity at the surface in ice-edge regions (800 micro mol photons m−2 s−1; MODIS Aqua), Seawater samples were obtained both after the melting and light exposure events (Melt and Light, respectively, hereafter). 2. Fast repetition rate (FRR) fluorometry To monitor the photophysiology of F. cylindrus during the freezing and melting processes, variable chlorophyll a fluorescence (ChlF) measurements were conducted using a bench-top Fast Repetition Rate fluorometer (FRRf) (FastOcean Act2Run Systems, Chelsea Technologies) with Act2Run software (Chelsea Technologies). Ice samples were directly thawed at 2 degrees C in the dark for 30 min, and the slushily melted ice samples were placed in a quartz tube and their flouresence (ChlF) was measured. A single turnover protocol was applied for the ChlF measurements; 100 flashlets with 1 micro second duration at a wavelength 450 nm and 2 micro second intervals for excitation of reaction centres of photosystem II (PSII, hereafter), and 20 flahlets with 1 μs duration and 100 micro second intervals for relaxation. Eighteen light steps were applied to generate a rapid light curve (RLC) from 0 to 1800 μmol photons m−2 s−1, taking less than 5 min to complete one RLC. At each light step (~15 s), at least five induction and relaxation curves were averaged to obtain ChlF yields, described in Table, after calibrating the ChlF yields with filtered seawater. According to the models proposed by Kolber et al. (1998), photosynthetic parameters of chlorophyll a (chl a) induction and relaxation curves were calculated based on the ChlF yields as shown in Table. Electron transport rate though the reaction centres of PSII (RCII) (ETRRCII) was calculated as per the equation detailed in the download document.

  • Metadata record for data from ASAC Project 2702 See the link below for public details on this project. Sea-ice algae are the basis of the Antarctic food web and are essential for healthy functioning of the Antarctic ecosystem. These algae exploit a unique niche within this extreme environment. Using advanced photosynthetic analysis we will examine the mechanisms which influence the productivity of sea-ice algae. The objective of this project is to understand the processes of light acclimation and photo-protection employed by sea-ice algae under extremely low temperature conditions. Several new hypotheses have been proposed in a recent review of low temperature acclimation of higher plants (Oquist and Huner, 2003). To further understand the remarkable tolerance of sea-ice algae to photoinhibition, we propose to test several of these hypotheses. Sea-ice algae fix inorganic carbon that forms the basis of the Southern Ocean food web. Sea ice covers up to 20 million km2 of the Southern Ocean each year. Global climate change will decrease the sea-ice thickness and distribution (IPCC, 2001); however subtle changes in temperature and light penetration will also have profound negative impacts on the photosynthetic efficiency of the sea-ice microalgae before any macroscale changes take place. Sea-ice algae are essentially the only food source for invertebrates and fish for up to nine months of the year. During winter and spring, krill (Euphausia sp.) have been observed feeding directly on sea-ice algae. Further, changes in sea-ice productivity will have a cascade effect further up the food web. Therefore, understanding how physical driving forces (temperature and light) affect sea-ice algae productivity will be critical to our ability to predict the effects of climate change and sustainably manage this unique and vulnerable ecosystem. Our primary objective is: To understand the processes of light acclimation and photo-protection employed by sea-ice algae under extremely low temperature conditions, with an aim to better understanding the potential implications of global climate change on the Antarctic sea-ice ecosystem.

  • From the abstract of one of the papers: Oxygen microelectrodes were used to measure the photosynthetic rates of Antarctic fast ice algal mats. Using the oxygen flux across the diffusive boundary layer below the fast ice at Davis, a productivity range of 0-1.78mg C per square metre per hour was measured. This is at the lower end of fast ice productivity estimates and suggests that conventional carbon 14 techniques may overestimate sea ice algal mat productivity. Photosynthetic capacity (P max) approached 0.05 mg per C.(mg chlorophyl a) per hr. Onset of photosynthesis saturation, E k, was found at about 14 micromol photons per square metre per second. The irradiance of photoinhibition onset, E inh, was about 20 micromol photons per square metre per second and the irradiance at the compensation point, E c, was 4 micromol photons per square metre per second.

  • Metadata record for data from ASAC Project 102 See the link below for public details on this project. From the abstracts of some of the referenced papers: Six species of marine microalgae, namely Phaeodactylum tricornutum Bohlin, Dunaliella tertiolecta Butcher, Isochrysis galbana Parke, Porphyridium purpureum (Bory) Ross, Chroomonas sp., and Oscillatoria woronichinii Anis., have been examined with respect to their gas exchange characteristics and the inorganic carbon species taken up by the cells from the bulk medium. All species showed a high affinity, in photosynthesis, for inorganic carbon and low CO2 compensation concentrations. Such data are suggestive of operation of a 'CO2-concentrating mechanism' in these microalgae. Direct measurements of internal organic carbon pools in four of the species studied confirm this (O. woronichinii and Chroomonas were not tested). By comparison of achieved photosynthetic rates with calculated rates of CO2 supply from the dehydration of bicarbonate, it was shown that Phaeodactylum, Porphyridium and Dunaliella could utilise the bicarbonate present in the medium. Data for the other species were inconclusive although the pH dependence of K 1/2CO2 for photosynthesis by Oscillatoria indicated that this species too could utilise bicarbonate. Such observations could, however, not be used as evidence that, at least in the eucaryotic algae examined, bicarbonate was the inorganic carbon species crossing the plasmalemma as Phaeodactylum, Porphyridium and Dunaliella, and Isochrysis all showed the presence of carbonic anhydrase activity in intact cells as well as in crude extracts. 'External' carbonic anhydrase activity represented from 1/4 to 1/2 of the total activity in the cells of these algae. It is concluded that, as a consequence of a CO2-concentrating mechanism, photorespiration was suppressed in the marine microalgae examined although the data obtained did not allow any firm conclusions to be drawn regarding the species of inorganic carbon transported into the cell. Analysis of the age composition of a given species within a community is fundamental to any study of population dynamics and to the subsequent analyses of community interactions such as competition, succession and productivity. A problem exists in that calendar age often provides little information on the role played by any given individual plant within a population. For many populations the most useful definition of population structure is obtained from an analysis of both the functional age and the vitality of the component plants. Data from such studies on populations of marine macroalgae are lacking mainly because of the lack of suitable methods. This paper provides a review of the methods which have ben applied to such analyses in both terrestrial and marine communities, discusses these methods in the context of marine algae and presents the results of a case study on the analysis of population structure in the large brown alga Durvillaea potatorum. Evidence is presented for the occurrence of sexual reproduction including plasmogamy and meiosis, events previously undescribed in the life history of Ascoseira mirabilis. Ascoseira is monoecious. Gametangia are formed in chains within conceptacles. Synaptonemal complexes, structures concerned with chromosome pairing in meiosis, have been observed in the nucleus of gametangial initials. Mature male and female gametes have the same size and appearance, and resemble typical brown algal zoids. Sexual interaction begins after the female gamete settles down, and both zygotes and unfused gametes develop into sporophytes. It is concluded that Ascoseira has the same basic pattern of life history that characterises the order Fucales, and it is argued that this is probably the result of convergent evolution rather than being indicative of close phylogenetic relationship. Life histories are of central importance in understanding evolution and phylogeny of brown algae. Like other hereditary traits, life history characteristics evolve by processes of natural selection, but because they are important determinants of biological fitness they have special evolutionary significance. Concepts of life history, as traditionally applied to brown algae, do not adequately reflect this, and they need to be broadened to include consideration of additional characteristics such as longevity and reproductive span. Life histories can be interpreted as adaptive strategies. Experimental evidence indicates that heteromorphic life histories probably evolved in response to seasonal change. Isomorphic life histories are possible adapted to stale environments, although some may also possess certain features which are adaptations to seasonal change. Life histories that lack an independent gametophyte generation may have evolved through reduction of heteromorphic life histories. It is argued that a significant increase in the longevity of sporophytes may have ben critical for the evolution of life histories lacking a free-living gametophyte, and also for the evolution of oogamy, phenomena which have occurred in several brown algal evolutionary lines. The common absence of asexual reproduction in advanced taxa probably indicates that its accessory ecological role in maintaining population size has become redundant, as well as reflecting the advantage of sexual over asexual reproduction. However, there is good evidence that sexual reproduction has been lost in a few species of brown algae, and the possible mechanisms and adaptive significance of this are discussed. Studies on Durvillaea antarctica on Macquarie Island, in the subantarctic, were conducted throughout the 1984 and in the summers of 1983 and 1985. Thereafter the annual sequence of conceptacle initiation, development, maturation and senescence was examined, using light and electron microscopy. Durvillaea antarctica on Macquarie Island releases mature ova and spermatozooids from February to Ausgust, with early stages of conceptacle development being observed during November, December and January, and senescent conceptacles from September to December. Both intertidal and subtidal forms of Durvillaea antarctica are found on Macquarie Island, the subtidal form lacking air cavities. In the light of mating experiments which resulted in successful cross-fertilisation, the two forms are considered to be conspecific.

  • Data were obtained from vertical profiles of a Fast Repetition Rate Fluorometer (FRRF, Chelsea FASTocean). The full set of parameters available are reported here. FRRF data have been integrated with on board ship data to add location, time. Parameters: Ship parameters Cruise Station Type Date Time Longitude Latitude Bottom depth Depth (of FRRF) FRRF parameters PMTeht (photomultipier) ADC PAR F light F0 Fm light Fm Fv light Fv Fq FvFm Sigma Sigma light NPQ RCII conc Jpsii JVpsii Alhii Chl conc For a table defining these units see Oxborough, K. Moore, C.M., Suggett, D.J., Lawson, T., Chan, H.G. and Geider, R.G. Direct estimation of functional PSII reaction centre concentration and PSII electron flux on a volume basis: a new approach to the analysis of Fast Repetition Rate fluorometry (FRRf) data. Liminology and Oceanography: Methods - 2012, 10:142-154. https://aslopubs.onlinelibrary.wiley.com/doi/abs/10.4319/lom.2012.10.142)

  • 1. In situ chlorophyll fluorescence measurements using pulse amplitude technique (PAM) of macroalga Desmarestia menziesii, assessing adaptation to high light exposure after sea ice breakout, and impact of Thala Valley tip wastes. 2. In situ chlorophyll fluorescence measurements using pulse amplitude technique (PAM) of sediment diatom material assessing adaptation to high light exposure after sea ice breakout, and impact of Thala Valley tip wastes. 3. In situ chlorophyll fluorescence measurements using pulse amplitude technique (PAM) of sponge Latrunculia decipiens assessing adaptation to high light exposure after sea ice breakout. 4. Ecotoxicological experiments where Desmarestia menziesii was exposed to copper in indoor aquaria, aim to determine EC50, NOEC, LOEC for copper. 5. Field collections of various macroalgae for stable isotope analysis: for determination of physiological mechanisms. 6. Field collections of sponge and diatom material for pigment analysis.

  • This record relates to the Australian component of the Latitudinal Gradient Project. The LGP is largely a New Zealand, US and Italian venture, but a small contribution has been made by Australian scientists. The Australian component of this work was completed as part of ASAC projects 2361 and 2682 (ASAC_2361, and ASAC_2682). Data from this project were entered into the herbarium access database, which has been linked to this record. The list below contains details of where and when samples were collected, and also the type of sample and the method of sampling. Cape Hallett and vicinity (2000, 2004): Biodiversity assessment of terrestrial plants (mosses, lichens); Invertebrate collections (mites, Collembola); plant ecology and community analysis; photosynthetic physiology of mosses and lichens; molecular genetics of mosses and lichens. Random sampling for biodiversity studies; point quadrats, releves for vegetation analysis, field laboratory experiments for physiological studies. Dry Valleys: Taylor Valley (1989, 1996), Garwood Valley (2001), Granite Harbour (1989; 1994, 1996) - plant ecology; plant physiology; biodiversity; invertebrate collections; molecular genetics of mosses. Random sampling for biodiversity studies; point quadrats, releves for vegetation analysis, field laboratory experiments for physiological studies. Beaufort Island (1996) - plant biodiversity; molecular genetics of mosses. Random sampling for biodiversity studies; point quadrats, releves for vegetation analysis, laboratory studies for molecular genetics. Darwin Glacier (1994): plant biodiversity; molecular genetics of invertebrates and mosses (random sampling for biodiversity; laboratory studies of invertebrate and moss molecular genetics). Project objectives: 1. Investigate the distribution of bryophytes and lichens in continental Antarctica 1a). to test the null hypothesis that species diversity does not change significantly with latitude; 1b). to explore the relationships between species and key environmental attributes including latitude, distance from the coast, temperature, substrate, snow cover, age of ice-free substrate. 2. To continue to participate in the Ross Sea Sector Latitudinal Gradient Project and develop an Australian corollary in the Prince Charles Mountains, involving international collaborators, incorporating the first two objectives of this project. 3. To develop an international collaborative biodiversity and ecophysiological program in the Prince Charles Mountains that will provide a parallel N-S latitude gradient study to mirror the LGP program in the Ross Sea region as part of the present RISCC cooperative program (to be superseded by the EBA (Evolution and Biodiversity of Antarctica) program) to address the above objectives. Taken from the 2008-2009 Progress Report: Progress against objectives: Continuing identification of moss and lichen samples previously collected from Cape Hallett, Granite Harbour and Darwin Glacier region. Lecidea s.l. lichens currently being studied in Austria by PhD student. Field work in Dry Valleys significantly curtailed by adverse weather. Field work planned for Darwin Glacier region and McMurdo Dry Valleys, particularly Taylor Valley and Granite Harbour region was severely curtailed due to adverse weather, helicopter diversions due to a Medical Evacuation, and other logistic constraints. 10 days of field time were lost. Limitations on field travel in Darwin Glacier region restricted the field work to a biologically depauperate region. The Prince Charles Mountains N-S transect, the only continental transect possibility for comparison with the Ross Sea area, unfortunately appears to have been abandoned through lack of logistic support. Taken from the 2009-2010 Progress Report: Identification of samples collected from AAT and Ross Sea Region continued during the year, interrupted significantly by the packing of the collection and transfer of specimens to the Tasmanian Herbarium. Work is now proceeding at the Herbarium with sorting, databasing and incorporation of packets into the Herbarium collection. The merging of the collection provides long-term security of curation and significantly boosts the cryptogam collections (35000 numbers) of the Tasmanian Herbarium.