CONTINENT > ANTARCTICA > Casey Station
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
This consolidated dataset consists of Australian Hydrographic Service (AHS) surveys HI621A and HI545 converted to International Terrestrial Reference Frame 2000 (ITRF2000) horizontal datum with Z conversion values for multiple height datums. The data was provided to the Australian Antarctic Division by Paul Digney of Jacobs consulting in February 2021. Included survey datasets: - HI621A.shp (Validated folder) - 1812_5093-HI621A_CASEY_Terrestrial.shp - QC_HI545_12pt5_appraised All data are in horizontal datum ITRF2000 and have been combined into a single ESRI geodatabase feature class titled AHS_Surveys_Casey_ITRF2000. Attribute data shows quality information, conversion factors (shift in metres) for multiple datums and the MSL orthometric height for Casey: Column Name, Alias, Meaning Easting, Easting, Easting ITRF2000 Northing, Northing, Northing ITRF2000 CD_To_GRS8, CD_To_GRS80, LAT (Chart Datum) to the Ellipsoid CD_TO_MSL_Casey, CD_To_MSL_Casey, Ellipsoid to Casey MSL Z_To_GRS80, Z_To_GRS80, Height to the Ellipsoid Z_To_MSL_Casey, Z_To_MSL_Casey, Local MSL orthometric height Vert_Uncer, Vertical_Uncertainty, How good is the Vertical Position Horiz_Unce, Horizontal Uncertainty, How good is the Horizontal Position Uncertaint, Uncertainty Comments, Depth_Comm, Depth_Comments, Vertical uncertainty ranges from 0.05 to 0.64 m and horizontal uncertainty ranges from 0.05 to 1.0 m See the attached document ‘Metadata Record Casey Final.xlsx’ for further details.
-
This metadata record contains the results from bioassays conducted to show the response of an Antarctic nemertean Antarctonemertes unilineata to contamination from combinations of Special Antarctic Blend (SAB) diesel, Marine Gas Oil (MGO) and Intermediate Fuel Oil (IFO 180), chemically dispersed with fuel dispersants Ardrox 6120, Slickgone LTSW and Slickgone NS. Note that the corresponding PhD thesis chapter refers to the species as Antarctonemertes sp., prior to being named Antarctonemertes unilineata in 2018. Experiments using SAB, MGO and IFO 180 with the dispersant Ardrox 6120, including fuel only and dispersant only treatments were conducted at Casey station. Experiments involving IFO 180 and the fuel dispersants Slickgone LTSW and Slickgone NS were conducted at the Antarctic Division’s Marine Research Facility quarantine labs. All experimental procedures, including test mix preparation and bioassays were conducted at 0 plus or minus 1 degree C. Water accommodated fractions (WAF; fuel mixed in water) and chemically enhanced water accommodated fractions (CEWAF) were made according to the specifications of Singer, Aurand et al. (2000), Barron and Ka’aihue (2003) and Kotzakoulakis (unpublished at time of writing). Dispersant only mixes were also made using filtered seawater (FSW) and dispersant volumes proportional to those used for CEWAF production. WAF was made using a loading ratio of 1: 25 (v/v) fuel to FSW, CEWAF was prepared using 1:100 (v/v) fuel to FSW ratio, and 1: 20 (v/v) dispersant to fuel ratio. Following the 48 h preparation time, the seawater WAF components of the mix were drained from the bottom of aspirator bottles and serially diluted. WAF treatment concentrations were 100%, 50%, 20% and 10%, CEWAF and dispersant only concentrations were 10%, 5%, 1% and 0.1%. Treatment solutions were replenished every four days to simulate a repeated pulse exposure to contaminants and to replace hydrocarbons lost through evaporation and adsorption and to maintain water quality parameters. WAF, CEWAF and dispersant only test solutions were remade every four days using identical methods. Tests were done in temperature-controlled cabinets set to 0 plus or minus 1 degree C following a 6 h light to 18 h dark photoperiod. Beakers were left uncovered to allow for the natural evaporation of lighter hydrocarbon components to reflect real fuel spill conditions. Experiments ran for 24 d except for the Ardrox 6120 only experiment, which ran for 16 d due to high mortality in this treatment. Sublethal and lethal endpoints were assessed at 1, 2, 4, 7, 8, 12, 14, 16, 20 and 24 d observations. Aliquot water samples for analysis of total hydrocarbon content (THC) were taken for initial and final test concentrations, and before and after each four-day water change, to obtain accurate profiles of hydrocarbon loss over the test period. Duplicate samples were taken for every treatment concentration and extracted with dichloromethane, spiked with an internal standard of 1-bromoeicosane and cyclooctane. Samples were analysed using gas chromatography with flame ionization detection (GC-FID) and gas chromatography mass spectrometry (GC-MS). Average THC concentrations for the duration of the experiment were obtained by integrating the measured concentrations to which animals were exposed following the methods of Brown et al. (2016) and Payne et al. (2014). This data submission includes one file detailing the TPH experiment analyses and one detailing the bioassay tests and results. The thesis that relates to this work is available from: https://epubs.scu.edu.au/theses/533/
-
Metadata record for data expected from ASAC Project 2915 See the link below for public details on this project. Petroleum contamination poses a major threat to Antarctic and subantarctic ecosystems because diesel and lubricants are persistent and, at poorly defined concentrations, are toxic in marine environments. This project will asses how quickly important components in these products are naturally depleted using a model field experiment. We will identify and quantify the non-degrading portions of the fuels, and assess the longevity and rate of removal of these. We will relate the chemical analysis data with biological data on organisms in the sea-bottom sediments, in order to assess which components of the fuels do most harm to the organisms. Project objectives: The overall objective is to better understand the long-term environmental impact of spilled petroleum products in Antarctic marine systems. Decades of Antarctic exploration have left a significant legacy of petroleum pollution on-land and in nearshore marine environments, particularly around human stations. The natural attenuation of spilled diesel and lubricants occurs slowly in cold climates, particularly once the pollutants have adsorbed onto marine sediments. Major programmes funded by the AAD have identified the location of spills, and the nature and fate of some of the pollutants. This project will address some of the significant uncertainties which still exist regarding the natural depletion and ecotoxicological impact of spilled diesel and lubricants in the marine environment. A new PhD student at Macquarie University will carry-out much of this work, in collaboration with the CI and investigators. The specific objectives are: 1. To develop a quantitative method using cutting edge two-dimensional gas chromatography-mass spectrometry (GCxGC-TOFMS) to identify the components of spilled diesel and lubricants, especially the complex mixtures of recalcitrant residues and the secondary products of alteration. 2. To calculate the rates of removal of pollutants in the marine environment by comprehensive statistical treatment of the chemical data-set, and to assess the processes by which this removal occurs (e.g. aerobic/anaerobic biodegradation, water-washing, etc). 3. To assess the degradation rates and longevity of pollutant components against the biology of the disturbed communities of microbes and microfauna in the same experiments, so as to form a hypothesis of which components of the complex mixtures have the most important ecotoxicological response and environment impact. 4. Using the most important single isolated or related groups of components, to test the specific ecotoxicological impact of each in the marine environment using a short-term field experiment and laboratory toxicity tests. Taken from the 2008-2009 Progress Report: Progress against objectives: 1. A GCxGC-FID was installed at Macquarie University. No TOFMS has been purchased yet, due to non-funding of ARC Lief grant application. No further progress made towards this objective. 2. We have a comprehensive dataset now of the rates of removal of hydrocarbon components of SAB from the SRE4 experiment. Detailed GC-MS has been carried out so as to track removal of components in much more detail than can be achieved by GC-FID alone. TPH data have been calculated. The data has been utilised in the draft of one paper by Shane Powell (Powell, Stark, Snape, Woolfenden, Bowman, Riddle; Effects of diesel and lubricant oils on Antarctic benthic microbial communities over five years) which has not been submitted yet, and in an early draft of a paper by PhD student Ellen Woolfenden (E. N. M. Woolfenden, G. Hince, S. Powell, S. Stark, J. Stark, I. Snape, S. George; Effects of diesel and lubricant oils on Antarctic benthic microbial communities over five years). 3. This has partly been done, and is being written up by the Powell et al. paper referred to above. Detailed analysis of which are the most toxic compounds of SAB awaits further work-up of the data. 4. The field season to carry out this test was postponed from 08/09 to 09/10. Taken from the 2009-2010 Progress Report: Progress against objectives: 1. An ARC LIEF grant application was successful and a TOFMS will be purchased from the funds gained in mid 2010. 2. So far the 0-1cm of 10cm cores of marine sediment spiked with Biodegradable lubricant, used lubricant, clean lubricant and Special Antarctic Blend (SAB) diesel have been analysed by gas chromatography coupled to a flame ionisation detector (GC-FID). Analyses by GC-FID allowed the Total Petroleum Hydrocarbon (TPH) concentration at each sample time to be calculated from statistical analysis. Further analyses were performed on the SAB sediments extractions by GC-MS (mass spectrometry). The chromatograms of the extractions were compared with chromatograms of standard mixtures of compounds and a compound identification library and thus, peaks were identified. From this peak identification, degradation patterns of compounds and groups of compounds could be seen; naphthalenes degrade less readily with increasing methyl groups but still degrade more readily than n-alkanes. From the analyses of the 0-1cm sediment extractions the most recalcitrant compounds were (adamantanes and diamantanes) and the most water soluble compounds were (naphthalenes and alkylnaphthalenes) in SAB diesel. The data has been written up in a draft paper by PhD student Ellen Woolfenden (E. N. M. Woolfenden, G. Hince, S. Powell, S. Stark, J. Stark, I. Snape, S. George; Effects of diesel and lubricant oils on Antarctic benthic microbial communities over five years). This paper will be submitted by May 2010. We also have started analysing the depth profiles for SAB in the SRE4 experiment. It is interesting to know as to whether any biodegradation patterns will be seen in the 1-10 cm depths of the sediment. Therefore the cores have been sectioned into 1 cm intervals and extracted at AAD. The extractions are awaiting analysis by GC-FID initially and GC-MS for further analysis. 3. This has partly been done, and is being written up by a Shane Powell et al. paper, that has not been published yet. Detailed analysis of which are the most toxic compounds of SAB awaits further work-up of the data. 4. The field season to carry out this test was carried out by Ellen Woolfenden in fieldseason 09/10. Samples have been collected and are stored at AAD. Marine sediment was collected and different portions were spiked with certain compounds from each of these groups as well as a selection of n-alkanes and SAB diesel as a comparison. These sediments have been extracted and are awaiting analysis by GC-MS to identify which of the compounds are depleted most readily within the experimental groups without the influence of other compounds present in SAB diesel. Ellen will be analysing them later in 2010. The dataset provided by Ellen Woolfenden contain a number of excel spreadsheets, as well as a word document providing further information about the data.
-
A survey of macrobenthic assemblages in soft-sediments was done at Casey Station, East Antarctica. Samples were taken by divers using hand-held corers (core size - 10 cm diameter by 10 cm deep). This was the final component of a large nested sampling survey extending over a three year periods with samples taken in three summers and one winter period. The aims were: 1) To examine spatial variation at several scales in these assemblages; 2) To determine if there were differences between potentially impacted areas and control areas; 3) To determine the level of replication, taxonomic resolution and data transformation that are appropriate to studies of human impacts in Antarctic soft-sediment assemblages. Cores were collected by divers in a hierarchical, spatially nested design incorporating 4 scales: Locations (1000s of metres apart), Sites (100s of metres), Plots (10s of metres) and among replicates within plots (~1 metre). This data set consists of 48 core samples from three locations, O'Brien Bay, Sparkes Bay and Wilkes. Samples are sorted mainly to species. Links to ASAC 1100. The fields in this dataset are: Location Site/Rep Species
-
A survey of the epibenthic fauna of hard-substrata was made around Casey Station, using a camera mounted on a frame to take photoquadrats. A nested sampling design was used with several spatial scales. At each location there were two sites, approximately 50-100 m apart. At each site there were three by 15 m long transects, approximately 5 m apart. On each transect there were 2 plots, 5 m long by 2 m wide. Six photoquadrats were taken in each plot. This metadata record describes one component of this survey, photoquadrats taken in and around boulders and boulder fields. One of the aims of this survey was to determine if there is any evidence of human impacts in these assemblages. There were several control and several potentially impacted locations. The data have yet to be analysed. Also links to ASAC 1100.
-
Marine soft-sediment assemblages were sampled from shallow (5 - 35m) nearshore regions around Casey Station, Windmill Islands, East Antarctica in late summer (Feb-March) 1997, using a van-Veen grab (surface area 20 x 25 cm). Samples were sieved through a 1 mm mesh and sorted to species where possible. A hierarchical, spatially nested sampling design was used with locations (km's apart), sites (100s of metres apart), and plots (10s of m). Two potentially impacted, polluted locations (adjacent to a sewage outfall and an old garbage tip) were compared with two control locations. Data was analysed using both multivariate and univariate statistical methods. Significant differences in assemblages were found between locations and between sites within locations. Significant differences in the abundances of taxa at several taxonomic levels (species, family, order, phylum) were found at all three spatial scales. Significant differences were also detected between the polluted and control locations. Compared with other Antarctic locations, the assemblages were dominated by crustaceans (90 to 97 % of individuals) and there was a paucity of polychaete fauna at the locations sampled. This study represents the first description of benthic assemblages from this region. A total of 70 samples are included in this data set. Also links to ASAC 1100. The fields in this dataset are: Location Site Plot/replicate Weight Volume Species
-
Marine soft-sediment assemblages were sampled from shallow (5 - 35m) nearshore regions around Casey Station, Windmill Islands, East Antarctica in winter 1998, using a van-Veen grab (surface area 20 x 25 cm). Samples were sieved through a 1 mm mesh and sorted to species where possible. A hierarchical, spatially nested sampling design was used with locations (km's apart), sites (100s of metres apart). Two potentially impacted, polluted locations (Shannon Bay - adjacent to a sewage outfall; and Brown Bay - adjacent to an old garbage tip) were compared with a control location in O'Brien Bay. Data were analysed using both multivariate and univariate statistical methods. Significant differences in assemblages were found between locations and between sites within locations. Significant differences in the abundances of taxa at several taxonomic levels (species, family, order, phylum) were also found at both spatial scales. Significant differences were also detected between the polluted and control locations. These samples were collected as part of a larger program examining human impacts in marine benthic assemblages at Casey Station. These samples were used in an analysis of temporal changes in soft-sediment assemblages at Casey. A total of 30 grab samples were collected in this survey. The fields in this dataset are: Location Site Date Site/Replicate Species
-
The effect of location and sediment contamination on recruitment of soft-sediment assemblages were examined in field experiment at Casey Station, East Antarctica. Four locations were used, a polluted bay adjacent to an old disused tip site (Brown Bay), a bay adjacent to the Casey Station sewage outfall, and two undisturbed control locations in O'Brien Bay. At each location two types of defaunated sediment (polluted and control) were placed 12 - 18 m, in experimental trays. Half of the experimental sediments were left in place over the Austral winter, from March - November, and the remaining sediments were collected after a total of one year, in February 1999. There were large differences in recruitment between the two locations and significant differences between the polluted and control sediment. There were not only differences in abundance of taxa and assemblage structure but also in spatial variability and variability of populations of certain taxa, with recruitment to the control locations more variable than polluted locations, and recruitment in the control sediment more variable than the polluted sediment. The majority of fauna recruiting to the experiment were highly motile colonizing species with non-pelagic lecithotrophic larvae, usually brooded and released as dispersing juveniles, such as gammarids, tanaids, isopods and gastropods. A total of 64 recruitment samples were collected after 9 months and 52 samples after one year. Samples were sieved at 500 micro m and sorted mainly to species. Samples are rows in data sheet. Site codes include place name (e.g. BB2) and experimental treatment (e.g. C1 - control 1). See accompanying sheet for full details of codes, including species names. Sediment chemistry data are means (and standard errors) for each treatment (averaged over 2 trays). Also links to ASAC 1100. The fields in this dataset are: Species Site Sample Abundance Toxicity Arsenic Cadmium Copper Lead Silver Zinc
-
The recruitment of mobile epifauna on hard-substratum was examined in a field experiment using tiles. A total of 160 tiles were deployed at five locations, with 32 tiles at each location, arranged in a spatially nested design. There were three potentially impacted locations locations (two in Brown Bay and one in Shannon Bay) and two control locations (in O'Brien Bay). This metadata record describes data from the first sampling time only. Eight tiles were collected from each location 15 months after the initial deployment. The experiment was setup so that the combined recruitment of mobile epifauna to the upper and lower sides of the tiles could be examined. The sessile epifauna on the tiles were also collected and are described in a separate metadata record. A total of 40 samples are included in this data. Also links to ASAC 1100.
-
A survey of macrobenthic assemblages in soft-sediments was done at Casey Station, East Antarctica. Samples were taken along four transects in Brown Bay, along a pollution gradient that has its source at an abandoned waste tip on the shore of Brown Bay. The transects were up to 300 M long and there were 9 sampling stations on each transect except for transect four which had only 4 sampling stations. Sampling stations were at the following distances from the shoreline and tip site: 10 m, 20 m, 30 m, 40 m, 50 m, 100 m, 150 m, 200 m, and 300 m. Two cores of the soft-sediment assemblages were taken at each sampling station and two cores for analysis of heavy metals and hydrocarbons. Samples were taken by divers using hand-held corers (fauna core size - 10 cm diameter by 10 cm deep; sediment analysis cores - 5 cm diam. by 10 cm deep). The aims were: 1) to determine the nature and extent of the contamination gradient in front of the tip site and; 2) to determine if there was a corresponding response in the soft-sediment assemblages along the contamination gradient. A total of 62 samples of soft-sediment assemblages and 62 samples for heavy metal and hydrocarbon analysis were taken. Sediment grain size was also examined at each sampling point. The benthic diatom communities were also analysed in each sample. Links to ASAC 1100. The fields in this dataset are: Distance Position Site and replicate Species