From 1 - 2 / 2
  • A times series of data was collected from coastal (land-fast) sea ice at Davis Station, Eastern Antarctica (68 degrees 34' 36" S, 77 degrees 58' 03" E; Figure 1) from November 16 to December 2, 2015. Sea ice temperature and salinity, as well as macro-nutrients (nitrate NO3-, nitrite NO2-, ammonium NH4+, phosphate PO43- and DSi), particulate organic carbon (POC) and chlorophyll a (Chla) in the sea ice were measured six times in 16 days of austral spring and early summer (Nov. 16, Nov. 20, Nov. 23, Nov. 26, Nov. 29, and Dec. 2; in days of the year, 320, 325, 327, 330, 333, and 336). Depths were measured from the top of the ice cores. Seawater below the ice was also sampled for comparison. Samples of snow, sea ice, brine and under-ice seawater were collected under trace metal clean conditions near Davis station during the transition of sea ice from winter to spring conditions (October 2015), on a regular basis (every 4 days) for 3 weeks. 6 sampling events were successfully achieved. The list of parameters collected during the fast ice study include in situ temperature, ice texture, pH, oxygen, iron and Chla, Br/I, carbonate, nutrients and POC, incubations with stable N and C isotopes. Samples are currently returning on V3 and will be analysed in the US, Belgium and Australia in the coming months. The biogeochemical observations will allow us to determine the roles of light versus iron in the initiation of the spring bloom in this region, and the role of the melting fast ice in fertilising the spring time primary production.

  • The TOMO-DEC experiment was organized in three main legs: (1) a search for sites to deploy seismic stations and for temporary camps to accommodate the researchers (austral summer 2003-2004); (2) the field phase of data collection during the austral summer 2004-2005; and finally (3) a laboratory phase of data gathering, organization and analysis, that still ongoing as papers continue to be published. The preliminary analysis of data involved an initial phase of data gathering from instruments of different types, their organization in a joint database, their conversion to a common format and, finally, the determination of the first P-wave arrival times. Leg 1 was performed during two summer field expeditions (2002-2003 and 2003-2004). The whole island was surveyed (including glacial areas) in order to identify potential sites for seismic stations and camps. Leg 2 took place between December 2004 and March 2005 with most of the activity focused in the deployment of seismic stations (on land and OBSs), air-gun shooting, data collection and final recovery of the majority of the seismic stations. This experiment took place between January 4 and January 24, 2005. Ninety-five on-land seismic stations and 14 OBSs were deployed. They included 7 Lennartz Marslite seismic stations (covering 14 positions), four M24 instruments (covering 7 positions) and 11 seismic arrays (with 84 short period sensors, occupying a total of 101 different positions), all of them working in continuous recording mode. Active seismic sources were generated using an array of air-guns with a maximum capacity of 3520 cubic inches. Together with the seismic waveforms, a final dataset consisting of travel times for more than 70000 crustal P-wave first arrivals was collected. Bathymetric data were recorded using both EM120 and EM-1002 multi-beam sounders and a SIMRAD EA-600 single-beam sounder. Magnetic profiles were obtained using the MarineMagnetics SEASPY marine magnetometer on the base of an Overhauser sensor. Finally gravimetric data were acquired using the marine gravimeter BELL AEROSPACE-TEXTRON BGM-3. In total more than 1000 km of profiles were acquired with all types of data. The experiment at Deception Island was organized in collaboration with several research institutions. For the field work and data collection the following institutions (with number of researchers and provided instruments) participated: Instituto Andaluz De Geofisica, Spain (12, 10 land seismic arrays of malIAG type); Lamont Doherty Earth Observatory, Columbia University, USA (4, 14 OBS); INGV-Osservatorio Vesuviano, Italy (1, 7 land stations of Marslite type); INGV-Catania, Italy (1, 4 land stations of M24 type); CENAPRED, Mexico (1); Universidad De Cadiz, Spain (2); Universidad De Colima, Mexico (1); University College Dublin, Ireland (1); Universidad Complutense De Madrid, Spain (1); Universidad De La Plata, Argentina (1); University Of Washington, USA (3); USGS Volcanic Hazard Team, USA (2).