Keyword

EARTH SCIENCE > BIOSPHERE > AQUATIC ECOSYSTEMS > BENTHIC HABITAT

5 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 5 / 5
  • Metadata record for data from AAS (ASAC) project 3051. Public Environmental change is by far one of the major crises facing our planet in recent times. This project will contribute specifically to understanding the effects of climate change and other human-induced impacts on marine species in Antarctica. Through studying key ecological and biological processes in marine benthic invertebrates we will better understand the spatial scale of populations, the nature of the processes that maintain those populations, how environmental change will affect those processes, and the levels of genetic diversity and resilience in Antarctic marine communities. Taken together this information will enable better, more informed management of Antarctic marine ecosystems. Project objectives: The project objectives, as stated in the project application round 2008/09, appear below: This project will combine experimental tests of demographic change with genetic tests of population isolation and diversity to enable predictions of the resilience of Antarctic marine invertebrates to current and predicted environmental change. The specific objectives of the project are; 1. Effects of change. Understand the effects of environmental change on reproduction (fecundity, reproductive success) and the early life history (larval behaviour, survivorship, and recruitment) of key Antarctic marine benthic invertebrates. 2. Isolation. Determine the degree of isolation/connectivity among populations as well as the levels of genetic diversity of key Antarctic marine benthic invertebrates. 3. Resilience. Assess the resilience (ability to cope with or adapt) of Antarctic marine benthic invertebrates to environmental change. 4. Practical Outcomes. Develop improved predictive capacity to contribute towards the development of management strategies for the conservation of Antarctic marine benthic invertebrates. Taken from the 2008-2009 Progress Report: Progress against objectives: This project commenced in 2008/9. Objective 1 - Effects of change - Collected live echinoderms (Abatus spp, Sterechinus numeyeri, Diploasterias) from around Casey Station and transported these on the A319 back to Kingston. A preliminary fertilisation trial has been run using Sterechinus individuals, and the remaining individuals are now being maintained in aquaria for future reproductive studies. Objective 2 - Isolation - Tissue samples from over 200 Sterechinus numeyeri were collected from 5 sites around Casey Station. These will form the foundation for genetic connectivity studies, and will complement exisiting Abatus samples from the same location. Laboratory processing of these samples has commenced, and development of microsatellite markers for both species is underway. Objectives 3 and 4 represent late-stage components of the project, so no progress can be reported on these at this stage. Taken from the 2009-2010 Progress Report: Progress against the objectives: Objective 1 - Effects of change - Collected live urchins (Abatus spp and Sterechinus numeyeri) from around Davis Station. Ran a series of spawning trials, although these were largely unsuccessful, with most individuals having spawned prior to the beginning of the season. We ran one successful fertilisation trial with S. neumeyeri to look at the effects of water temperature and salinity on fertilisation success. Preliminary analysis of the data indicates these environmental parameters do have an effect on fertilisation. Objective 2 - Isolation - Tissue samples from over 350 Sterechinus numeyeri were collected from 12 sites around Davis Station. These will be used for genetic connectivity studies, and will complement samples collected from Casey in the previous season. Larval Sterechinus were also collected from the water column and preserved for genetic analysis along with adult and juvenile Abatus ingens. Microsatellite markers (11 polymorphic loci) have now been developed for Sterechinus, and microsatellite deveopment is partially completed for Abatus ingens; the library has been created but optimisation of loci still needs to be done. We have completed DNA sequencing for Sterechinus and Abatus from Casey Station for 1 gene region (16S) and are optimising an additional 2 regions. This will be used to compare populations from Davis and Casey to understand large-scale connectivity. Objectives 3 and 4 represent late-stage components of the project. As this is only the second year of a 5-year programme, no progress can be reported on these at this stage.

  • This dataset is a description of the shallow coastal marine fauna found in the Vestfold Hills and Rauer Island area, Antarctica. The results are from various surveys in this region over a 12 month period in 1981-82, and a full listing of species (with photographs) is given in the documentation. It includes benthic, pelagic and planktonic organisms of the coast as well as those that inhabit the ice-water interface.

  • Depth related changes in the composition of infaunal invertebrate communities were investigated at two sites in the Windmill Islands around Casey station, East Antarctica, during the 2006/07 summer. Sediment cores (10cm deep x 10cm diameter) were collected from 4 depths (7m, 11m, 17, and 22m) from each of three transects at two sites (McGrady Cove and O'Brien Bay 1). Cores were sieved through a 500 micron mesh and extracted fauna were preserved in 8% formalin and were later counted and identified to species or to morphospecies established through previous infaunal research at Casey. This work was conducted as part of ASAC 2201 (ASAC_2201).

  • Metadata record for data from AAS (ASAC) project 3134. Data from this project will be available via the child records. Public Ocean acidification and warming are global phenomena that will impact marine biota through the 21st century. This project will provide urgently needed predictive information on the likely survivorship of benthic invertebrates in near shore Antarctic environments that is crucial for risk assessment of potential future changes to oceans. As oceans acidify carbonate saturation decreases, reducing the material required to produce marine skeletons. By examining the effects of increased ocean temperature and acidification on planktonic and benthic life stages of both calcifying and non-calcifying ecologically important organisms, predictions can be made on the potential vulnerability of marine biota to climatic change. Project Objectives: This project aims to deliver one of the first assessments of the impacts that ocean warming and acidification through rising CO2 levels will have on Antarctic benthic marine invertebrates and of the adaptive capacity of common Antarctic biota to climate change. The developmental success of species that have a skeleton will be compared to those that do not under controlled conditions of increased sea water temperature and CO2. A comparison of the responses and sensitivity of developmental stages of calcifiers (echinoids, bivalves) and non-calcifiers (asteroids) to elevated CO2 and temperature will generate much needed empirical data for assessment of risk and adaptive capacity of Antarctica's marine biota and will enable predictions of how benthic invertebrates will fare with respect to climate change scenarios. The specific aims of the project are to: 1 - examine the impacts of predicted future elevated ocean temperatures and CO2 on fertilisation success, embryonic and larval development of Antarctic molluscs and echinoderms 2 - document skeletal calcification and morphology and growth in larvae under controlled conditions of increased sea water temperature and CO2. 3 - compare the dynamics of biomineralisation with respect to the elemental composition in response to increased temperature and CO2 in species with aragonite and calcite exoskeletons (bivalves) and porous high magnesium calcite endoskeletons (echinoids) to assess the potential for an in-built adaptive response in calcification 4 - used as a biomarker measure of stress and impaired calcification. 5 - compare biomineralisation and elemental signatures in skeletons in larvae of Antarctic molluscs and echinoderms under climate change scenarios with that determined for related species at lower latitudes to assess the relative sensitivity and vulnerability of Antarctic biota. Taken from the 2009-2010 Progress Report: Progress against objectives: 1. Unsuccessful as target species, Sterechinus neumayeri had already passed its spawning period, and attempts to spawn and fertilise the Antarctic bivalve, Laternula ellipticaskeleta failed. 2. Skeletal calcification and morphology of juveniles of Abatus nimrodi were successfully documented under controlled conditions of ocean warming and acidification. 3. Juveniles of A. nimrodi were preserved and returned to Australia in order to compare the dynamics of biomineralisation and skeletal mineralogy. 4. No heat shock protein experiments were carried out. 5. Air-dried tests of S. neumayeri and A. nimrodi were RTA'd in order to compare the dynamics of biomineralisation and skeletal mineralogy. Taken from some project abstracts written by two students working on the project: Impacts of ocean acidification and increasing seawater temperature on the early life history of the Antarctic echinoderm Sterechinus neumayeri. Simultaneous effects of ocean acidification and temperature change in Antarctic environments warrant investigation as little is known about the synergistic consequences of these parameters on Antarctic benthic species. Fertilisation success, embryo cleavage, blastulation and gastrulation were documented in the sea urchin Sterechinus neumayeri, reared for up to 12 days under experimental pCO2 and elevated temperature scenarios predicted by the IPCC (2007) over the next century. Experimental treatments included controls (-1 degrees C, pH 8.0), elevated temperature (1 degrees C, 3 degrees C) and decreased pH (7.8, 7.6) in all combinations in a multi-factorial design. Preliminary results suggest that fertilisation and development up to the gastrula stages are robust to increases in pCO2 and temperature predicted by the year 2100. Percentages of normally developing blastula and gastrula were also slightly higher in temperatures 2 degrees C above ambient. Impacts of ocean acidification and increasing seawater temperature on juveniles of two Antarctic heart urchins, Abatus ingens and Abatus shackletoni. Simultaneous effects of ocean acidification and temperature change in Antarctic environments warrant investigation as little is known about the synergistic consequences of these factors on Antarctic benthic species. Juvenile Abatus ingens and Abatus shackletoni were incubated under experimental pCO2 and elevated temperature scenarios reflective of those predicted by the IPCC (2007). Direct development from embryos to juveniles occurs in these species without a pelagic larval phase and the developing young are lecithotrophic for an extended period. Adult urchins were collected near Davis Station during the Austral summer season (January-February 2011). Juveniles were extracted from the parental brood pouch and reared in flow-through experimental treatments for 4 weeks. CO2-enriched air was supplied to seawater in which pCO2 was regulated at the target levels of 448 plus or minus 6.51 (pH 8.01 plus or minus 0.005), 846 plus or minus 6.58 (pH 7.83 plus or minus 0.005) and 1371 plus or minus 7.34 (pH 7.63 plus or minus 0.007) ppm and seawater temperature was set at -1 plus or minus 0.03 degrees C (Control) and 1 plus or minus 0.32 degrees C. Preliminary results from this investigation showed significant increases in spine growth in juveniles of both A.ingens and A. shackletoni over the experimental period. However, juveniles reared in 1 degrees C significantly exhibited more incidences of epithelial separation in the spines compared to those reared in -1 degrees C. This suggests that, although there is an inherent capacity for tolerance of varying levels of pH in seawater in the absence of the protection afforded by the maternal brood pouch, these juveniles are still at risk from increasing temperatures.

  • Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks, 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125 hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison.