ATTRIBUTE
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
Many vocalisations produced by Weddell seals (Leptonychotes weddellii) are made up of repeated individual distinct sounds (elements). Patterning of multiple element calls was examined during the breeding season at Casey and Davis, Antarctica. Element and interval durations were measured from 405 calls all greater than 3 elements in length. The duration of the calls (22 plus or minus 16.6s) did not seem to vary with an increasing number of elements (F4.404 = 1.83, p = 0.122) because element and interval durations decreased as the number of elements within a call increased. Underwater vocalisations showed seven distinct timing patterns of increasing, decreasing, or constant element and interval durations throughout the calls. One call type occurred with six rhythm patterns, although the majority exhibited only two rhythms. Some call types also displayed steady frequency changes as they progressed. Weddell seal multiple element calls are rhythmically repeated and thus the durations of the elements and intervals within a call occur in a regular manner. Rhythmical repetition used during vocal communication likely enhances the probability of a call being detected and has important implications for the extent to which the seals can successfully transmit information over long distances and during times of high level background noise. See other metadata records and datasets associated with ASAC project 2122 (ASAC_2122) for further information. The fields in this dataset are: Tape/Site/File Filename Call Type Total Number of Elements Attribute Frequency Time Casey Davis
-
Possible communication between territorial male Weddell seals (Leptonychotes weddellii) under the ice with females on the ice was investigated. In-air and underwater recordings of underwater calls were made at three locations near Davis, Antarctica. Most underwater calls were not detectable in air, often because of wind noise. In-air call amplitudes of detectable calls ranged from 32-74 dB re. 20 microPa at 86 Hz down to 4-38 dB re. 20 microPa at 3.6 kHz. Most of these would be audible to humans. Only 26 of 582 amplitude measurements (from 230 calls) ranged from 5 dB to a maximum of 15 dB above the minimum harbour-seal (Phoca vitulina) in-air detection threshold. Seals on the ice could likely hear a few very loud underwater calls but only if the caller was nearby and there were no wind noises. The low detectability of underwater calls in air likely precludes effective communication between underwater seals and those on the ice. See other metadata records and datasets associated with ASAC project 2122 (ASAC_2122) for further information. The fields in this dataset are: Column A: G = grunt, T = trill, CT = constant freq. trill, O = tone, C = chug, AW = ascending whistle, DW = descending whistle, L = growl, R - roar Column B: frequency (Hz) Column C: underwater call level NOTE dB re 20 uPa Column D: in-air call level dB re 20 uPa Column E: in-air background noise level at this frequency dB re 20 uPa Column F: water - air difference dB Column G: location, 1-3, see paper for code Column H: seal in-air threshold dB re 20 uPa Column I: human in-air threshold dB re 20 uPa Column J: seal in-air threshold at this frequency dB re 20 uPa