From 1 - 3 / 3
  • From the abstract of the attached paper: Vocal recognition may function as a critical factor in maintaining the phocid mother-pup bond during lactation. For vocal recognition to function, the caller must produce individually distinct calls that are recognised by their intended recipient. Mother-pup vocal recognition has been studied extensively in colonial otariids and appears to be characteristic of this family. Although less numerous, empirical studies of phocid species have revealed a range of recognition abilities. This study investigated whether Weddell seal (Leptonychotes weddellii) females produce individually distinct 'pup contact' calls that function during natural pair reunions. Fifteen calls from each of nine females recorded in the Vestfold Hills, Antarctica were analysed. One temporal, nine fundamental frequency and five spectral characteristics were measured. Results of the cross-validated Discriminant Function Analysis revealed that mothers produce individually distinct calls with 56% of calls assigned to the correct individual. The probability of achieving this level of discrimination on novel data by chance alone is highly improbable. Analysis of eight mother-pup reunions recorded near McMurdo Sound, Antarctica further demonstrated that these 'pup contact' calls function during natural pair reunions. Behavioural analysis also revealed that pups were chiefly responsible for establishing and maintaining close contact throughout the reunion process. Our study therefore demonstrates that Weddell seal females produce calls with sufficient stereotypy to allow pups to identify them during pair reunions, providing evidence of a functioning mother-pup vocal recognition system. Column A - Row 1: Gives the tag number of the female. - Rows 3-33: The list of acoustic measurements recorded from the spectrograms. - Rows 3-5: Temporal measurements recorded in milliseconds. - Rows 7-12: Frequency measurements recorded from the fundamental frequency. Rows 9-11 were measured at the 1/4, 2/4 and 3/4 temporal positions along the fundamental frequency respectively. - Rows 13-17: Give the number of the frequency band with the most energy at the temporal positions stated (i.e. fundamental frequency band=1, first harmonic=2 etc). - Rows 19-29: List the fundamental frequency measurements, taken at the temporal positions stated, used to calculate Mean frequency (Row 31) and the Coefficient of Frequency Modulation (Row 33) using the formula listed in the publication. - Rows 35 and 36: List the cursor error margins of the acoustic analysis program I used. Columns B-P - Give details of the above mentioned acoustic characteristics for 15 replicate calls from each of the 9 females sampled.

  • Many vocalisations produced by Weddell seals (Leptonychotes weddellii) are made up of repeated individual distinct sounds (elements). Patterning of multiple element calls was examined during the breeding season at Casey and Davis, Antarctica. Element and interval durations were measured from 405 calls all greater than 3 elements in length. The duration of the calls (22 plus or minus 16.6s) did not seem to vary with an increasing number of elements (F4.404 = 1.83, p = 0.122) because element and interval durations decreased as the number of elements within a call increased. Underwater vocalisations showed seven distinct timing patterns of increasing, decreasing, or constant element and interval durations throughout the calls. One call type occurred with six rhythm patterns, although the majority exhibited only two rhythms. Some call types also displayed steady frequency changes as they progressed. Weddell seal multiple element calls are rhythmically repeated and thus the durations of the elements and intervals within a call occur in a regular manner. Rhythmical repetition used during vocal communication likely enhances the probability of a call being detected and has important implications for the extent to which the seals can successfully transmit information over long distances and during times of high level background noise. See other metadata records and datasets associated with ASAC project 2122 (ASAC_2122) for further information. The fields in this dataset are: Tape/Site/File Filename Call Type Total Number of Elements Attribute Frequency Time Casey Davis

  • Possible communication between territorial male Weddell seals (Leptonychotes weddellii) under the ice with females on the ice was investigated. In-air and underwater recordings of underwater calls were made at three locations near Davis, Antarctica. Most underwater calls were not detectable in air, often because of wind noise. In-air call amplitudes of detectable calls ranged from 32-74 dB re. 20 microPa at 86 Hz down to 4-38 dB re. 20 microPa at 3.6 kHz. Most of these would be audible to humans. Only 26 of 582 amplitude measurements (from 230 calls) ranged from 5 dB to a maximum of 15 dB above the minimum harbour-seal (Phoca vitulina) in-air detection threshold. Seals on the ice could likely hear a few very loud underwater calls but only if the caller was nearby and there were no wind noises. The low detectability of underwater calls in air likely precludes effective communication between underwater seals and those on the ice. See other metadata records and datasets associated with ASAC project 2122 (ASAC_2122) for further information. The fields in this dataset are: Column A: G = grunt, T = trill, CT = constant freq. trill, O = tone, C = chug, AW = ascending whistle, DW = descending whistle, L = growl, R - roar Column B: frequency (Hz) Column C: underwater call level NOTE dB re 20 uPa Column D: in-air call level dB re 20 uPa Column E: in-air background noise level at this frequency dB re 20 uPa Column F: water - air difference dB Column G: location, 1-3, see paper for code Column H: seal in-air threshold dB re 20 uPa Column I: human in-air threshold dB re 20 uPa Column J: seal in-air threshold at this frequency dB re 20 uPa