From 1 - 10 / 72
  • Sampling sites with a list of activities at each site for the Tangaroa cruise - March to April 2004. Tangaroa Tube Label our use Sample#our use Date(UTC) Time(UTC)Shorthand entry code - ignore Time(UTC)Formatted Use this Long Degdegrees Long Minminutes Long Decdecimaldegrees Lat Degdegrees Lat Minminutes Lat Decdecimaldegrees Local time (dec hrs)actual solar local time (decimal hours) calc from longitude DOES NOT EQUAL TIME ZONE Sea Temp Ice present/absent Lugol's#microscope sample number for phytoplankton ID (Our use only) HPLC Volvolume filtered for HPLC pigment analysis (Our use only) Cocco Volvolume filtered for coccolithophorid counts (Our use only) Cocco tray No.(Our use only) Location:DCM: Deep chlorophyll maximum Thermo: Thermocline

  • Update - 2013-11-14 - data from the cruise now included in the download file. Two extra excel spreadsheets have been added to the download file - one is a summary file, and the other contains pigment data. Sampling sites with a list of activities at each site for the HIPPIES cruise of the Aurora Australis - December to January 2003-2004. Aurora V4 Tube Labelour use Sample#our use Date(UTC) Time(UTC)Shorthand entry code - ignore Time(UTC)Formatted Use this Long Degdegrees Long Minminutes Long Decdecimaldegrees Lat Degdegrees Lat Minminutes LatDecdecimaldegrees Local time (dec hrs)actual solar local time (decimal hours) calc from longitude DOES NOT EQUAL TIME ZONE Sea Temp Ice present/absent Lugol's#microscope sample number for phytoplankton ID (Our use only) HPLC Volvolume filtered for HPLC pigment analysis (Our use only) Cocco Volvolume filtered for coccolithophorid counts (Our use only) Cocco tray No.(Our use only) Location:DCM: Deep chlorophyll maximum Thermo: Thermocline

  • This study employs data from two satellite-borne instruments namely, the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and the Total Ozone Mapping Spectrometer (TOMS). This work was completed as part of an honours project under ASAC project 2210 (UV climate over the Southern Ocean south of Australia, and its biological impact). Further information about the project is available in the word document available for download (extract from the honours thesis). The fields in this dataset are: Region Year Day (Julian Day) Pixels (number of cloud free pixels from SeaWiFS sensor that were available for analysis) Mean Chlorophyll (milligrams per cubic metre) (derived from cloud free pixels) Standard Deviation Ozone (dobson units) from the TOMS sensor (average for whole region).

  • Locations of sampling sites for ASAC project 40 on voyage 3 of the Aurora Australis in the 2006/2007 season. Samples were collected during January and February of 2007. The final dataset will contain information on chlorophyll, carotenoids, coccolithophorids and species identification and counts. Public Summary from the project: This program ... aims to determine the role of single celled plants, animals, bacteria and viruses in Antarctic waters. We quantify their vital role as food for other organisms, their potential influence in moderating global climate change through absorption of CO2 and production of DMS, and determine their response to effect of climate change. For more information, see the other metadata records related to ASAC project 40 (ASAC_40). The fields in this dataset are: Tube Label Date (UTC) Time (UTC) Latitude Longitude Sea Temperature Ice (Presence or Absence) Lugols Bottle Fluorometer

  • Zooplankton grazing experiments using the dilution method have been conducted for 2 months at Davis station and on a weekly basis in order to investigate the relationship between zooplankton grazing rates and DMS production in surface water during the blooming season. Regular water sampling in conjunction with these experiments has been conducted to quantify pigments and phytoplankton populations in the same waters. This work was completed as part of ASAC project 2100 (ASAC_2100). The dataset also includes methods used to obtain the data. The fields in this dataset are: chlorophyll DMS DMSP Pigment Dilution

  • Locations of sampling sites for ASAC project 40 on voyage 6 of the Aurora Australis in the 1997/1998 season. Samples were collected during March of 1998. The final dataset will contain information on chlorophyll, carotenoids, coccolithophorids and species identification and counts. Public Summary from the project: This program ... aims to determine the role of single celled plants, animals, bacteria and viruses in Antarctic waters. We quantify their vital role as food for other organisms, their potential influence in moderating global climate change through absorption of CO2 and production of DMS, and determine their response to effect of climate change. For more information, see the other metadata records related to ASAC project 40 (ASAC_40). The fields in this dataset are: Tube Label Date (UTC) Time (UTC) Latitude Longitude Sea Temperature Ice (Presence or Absence) Lugols Bottle Fluorometer

  • Sea ice covers up to 20 million km2 of the Southern Ocean. When present it supports a vigorous ecosystem that provides energy and food for all other marine organisms. Using the latest micro sensor technology, we are examining the factors that effect the productivity of this vital link in the Antarctic marine food web. New data were added to this metadata record in January 2011. These data included FRRF data collected on the CEAMARC, CASO, SIPEX and SAZ-SENSE voyages. A word document in the download file provides details about these datasets, plus those collected on Voyage 1 2009-2010, and voyage 2 2008-2009. The download file also contains a folder labelled "Older data". This data is described below: An explanation of the excel spreadsheet in the download file is as follows: Worksheet 1 is the chlorophyll data Worksheet 3 is the location data CHLOROPHYLL DATA Column A is sample name, the first letter refers to the location data in worksheet 3, the second to the ice flow number and the third to the replicate number Section refers to depth in ice core, measured from the bottom Ignore C Column D is the total volume of melted ice Column E is the volume of D that was filtered Column G is the Fluorometer reading before the addition dilute HCl Column H is the fluorometer reading after the addition of acid Column I is the calculation of chlorophyl concentration in the sample Column K is areal chlorophyll estimate Column L is the mean for the core Column N is the mean for the site Column O is the standard deviation LOCATION DATA Lat, longs and times of each sampling. The first set (B-G) refers to the time sampling started, the second (H-M) to when it finished Project objectives: - Determine the net photosynthesis and primary productivity of the phytoplankton and major sea ice algal communities of the Eastern Antarctic Sea Ice Zone (SIZ). Estimate seasonal and annual algal production and inter annual variability - Obtain data on biomass distribution and variability to establish regional relationships between ice thickness, snow cover, and biomass - Determine the effects of a) Light b) Nutrients (principally nitrate and iron) c) Temperature on photosynthesis and primary production - Determine whether the biomass and productivity of the phytoplankton and sea ice algae in winter and spring limits the biomass or growth of krill - Estimate the effects of climate change on Sea ice Zone primary production Taken from the 2008-2009 Progress Report: Progress against objectives: This project used V2, a spring voyage, to collect underway data to determine surface biomass and primary production. Biomass samples (chlorophyll a) were taken every 3 hours. Productivity estimates by PAM were also made every 3 hours. Productivity measurements by FRRF were made every 1 minute. Nutrient samples were taken at the same time as the biomass samples. Analysis of the biomass samples is complete. Preliminary analysis of the productivity data has commenced. This data is being used for a Masters project (Rob Johnson, IASOS). An iron addition experiment accompanied this monitoring. Iron was added to samples taken every 3 hours and the change in photosynthesis (maximum quantum yield) measured with a PAM. The rate of recovery from iron stress was the principal focus. Most of this data has been submitted as metadata. Using The PAM and FRRF simultaneously also enabled a comparison to be made between these different ways of measuring photosynthesis. Progress was also made on the analysis of FRRF productivity and biomass data collected over several years on the L'Astrolabe transect. Analysis involves quantitative manipulation of FRRF data and correlation with chlorophyll, nutrients, temperature and other biological parameters. A publication arising from this work will be submitted this year. Taken from the 2009-2010 Progress Report: Progress against objectives: We participated in V1 of the Aurora Australis, spring 2009. The objective of this project was to measure surface primary production off East Antarctica. Photosynthetic parameters of phytoplankton under actinic light (L) as well as in darkness (D) were measured using a fast repetition rate fluorometer (FRRF). The parameters included the maximum photochemical efficiency (Fv/FmL,D), the functional absorption cross section of photosystem II (sPSII,L,D) and a turnover time of electron transfer (tL,D). Chlorophyll a concentration was measured by using Turner fluorometer. The photosynthetic parameters, irradiance and chlorophyll a concentration will then be used to estimate primary production of phytoplankton. This field program particularly focussed on the first of the listed objectives, ie 'Determine the net photosynthesis and primary productivity of the phytoplankton and major sea ice algal communities of the Eastern Antarctic Sea Ice Zone (SIZ). Estimate seasonal and annual algal production and inter annual variability'. We have been collecting FRRF-based primary production data from each season and the 2009 data provides the late spring data to supplement data from autumn, winter and summer, collected in previous seasons. We have now built up a comprehensive assessment of season variability which will enable a reliable estimate of annual primary production. These analyses will also provide a detailed snap shot of primary production with which to compare future changes. Preliminary analysis shows clear patterns of variation in Fv/Fm, a parameter that is particularly sensitive to low iron concentration. This data is shown on an accompanying diagram. Productivity analysis is still underway. Much of the work for this project forms part of the PhD project of Cheah Wee.Wee is expected to finish his PhD by December 2010 and it is anticipated that all data analysis for the project will have been completed and the finished manuscripts submitted for publication. He has already had one manuscript form this project accepted (Cheah et al, 2010).

  • Locations of sampling sites for ASAC project 40 on voyage 4 of the Aurora Australis in the 2009/2010 season. Samples were collected during March of 2010. The final dataset will contain information on chlorophyll, carotenoids, coccolithophorids and species identification and counts. Public Summary from the project: This program ... aims to determine the role of single celled plants, animals, bacteria and viruses in Antarctic waters. We quantify their vital role as food for other organisms, their potential influence in moderating global climate change through absorption of CO2 and production of DMS, and determine their response to effect of climate change. For more information, see the other metadata records related to ASAC project 40 (ASAC_40). The fields in this dataset are: Tube Label Date (UTC) Time (UTC) Latitude Longitude Sea Temperature Ice (Presence or Absence) Lugols Bottle Fluorometer

  • 1. In situ chlorophyll fluorescence measurements using pulse amplitude technique (PAM) of macroalga Desmarestia menziesii, assessing adaptation to high light exposure after sea ice breakout, and impact of Thala Valley tip wastes. 2. In situ chlorophyll fluorescence measurements using pulse amplitude technique (PAM) of sediment diatom material assessing adaptation to high light exposure after sea ice breakout, and impact of Thala Valley tip wastes. 3. In situ chlorophyll fluorescence measurements using pulse amplitude technique (PAM) of sponge Latrunculia decipiens assessing adaptation to high light exposure after sea ice breakout. 4. Ecotoxicological experiments where Desmarestia menziesii was exposed to copper in indoor aquaria, aim to determine EC50, NOEC, LOEC for copper. 5. Field collections of various macroalgae for stable isotope analysis: for determination of physiological mechanisms. 6. Field collections of sponge and diatom material for pigment analysis.

  • The productivity of Antarctic waters may be controlled by the amount of iron. Experiments have shown that this is probably the case for phytoplankton but as yet we do not know if iron limits the growth of sea ice algae. This study will assess whether iron limits sea ice algae production and will conduct experiments to work out how these algae use iron. Measurements have been made to determine whether sea ice algae are limited by Fe. Sea ice samples were taken and this spreadsheet refers to those ice cores Columns A-G are self explanatory Column G is the depth in the ice core from the bottom Column H is the chlorophyll concentration in mg Chl m-2 Column I is the phaeophytin concentration in mg m-2 J is the total amount of protein in the sample ng m-2 K is the total amount of the protein flavodoxin ng m-2 L is the total amount of ferrodoxin ng m-2 These last two enable the Fe limitation status to calculated (not completed).