Keyword

XBT > Expendable Bathythermographs

7 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 7 / 7
  • Oceanographic measurements were collected aboard Aurora Australis cruise au1121, voyage "Marine Science" (i.e. voyage 2.1) 2010/2011, from 4th January to 6th February 2011. The cruise commenced with a full north to south occupation of the CLIVAR/WOCE meridional repeat section SR3, followed by work around the Antarctic continental margin in the region of the Adelie Depression and the former Mertz Glacier ice tongue. A total of 149 CTD vertical profile stations were taken on the cruise, most to within 15 metres of the bottom. Over 2000 Niskin bottle water samples were collected for the measurement of salinity, dissolved oxygen, nutrients (phosphate, nitrate+nitrite and silicate), oxygen-18, dissolved inorganic carbon (i.e. TCO2), alkalinity, pH, helium, tritium, and biological parameters, using a 24 bottle rosette sampler. Upper water column current profile data were collected by a ship mounted ADCP. Meteorological and water property data were collected by the array of ship's underway sensors. An array of 3 bottom mounted ADCP moorings were deployed near the Adelie Depression, for recovery in the 2012/13 season. Underway data were also collected on this voyage, and are linked to this metadata record at the provided URL. A detailed readme is available as part of the download. Finally, ADCP (Acoustic Doppler Current Profiler) data are also linked, and are in Matlab format.

  • Extracted Level 0 data are provided as audio files recorded in flight with a Sony PX470 voice recorder. These files were processed to generate the associated Level 2 products. Project 4346 demonstrated the use of Airborne eXpendable Bathy-Thermograph (AXBT) and Airborne eXpendable Conductivity, Temperature, Depth (AXCTD) sensors from a BT-67 Basler aircraft in East Antarctica. The primary objective was to use AXBT and AXCTD sensors to infer seafloor depth where no previous measurements had been made by ship, often by deploying sensors into narrow gaps in sea ice. Inferring a snapshot of the ocean state by detecting major thermoclines was a secondary objective. Although several sensors were purchased with external funds, the efforts to develop operational and subsequent data analysis approaches were unfunded as this was an add-on, target of opportunity. The effort is best described as a prototype demonstration project to test whether the seafloor depth could be inferred beneath narrow sea ice leads from a rapidly flying aircraft. All but eight AXBT sensors were donated to the University of Texas Institute for Geophysics (UTIG); AXCTDs were purchased by the Antarctic Gateway Partnership. Receiver and data processing equipment were loaned to UTIG.

  • Extracted Level 2 data include three data types: 1) Position data are included in .GPX files organized by campaign where “ICP8” refers to the 2016-2017 ICECAP2 field season and “ICP9” refers to the 2017-2018 field season. We recommend opening these files in QGIS or on similar platform. Metadata for each sonobuoy deployment include the unique identifier for each profile as well as the date, time, and aircraft longitude, latitude, elevation, and speed (in East, North, Up coordinates) at the time of deployment. Season identifier, flight number, and unique profile identifier are also displayed. In QGIS, for example, clicking on the drop locations using the “Identify Features” tool is a convenient way of investigating the metadata. 2) Profile data are released as Exportable Data Files (EDF), an ASCII format with a metadata header followed by the profile data. 3) Profile data are also released as Hierarchical Data Format (HDF) files using a .h5 extension. This format is provided so users can take advantage of numerous and freely available Python and MATLAB resources simplifying importing and investigating the profiles. Project 4346 demonstrated the use of Airborne eXpendable Bathy-Thermograph (AXBT) and Airborne eXpendable Conductivity, Temperature, Depth (AXCTD) sensors from a BT-67 Basler aircraft in East Antarctica. The primary objective was to use AXBT and AXCTD sensors to infer seafloor depth where no previous measurements had been made by ship, often by deploying sensors into narrow gaps in sea ice. Inferring a snapshot of the ocean state by detecting major thermoclines was a secondary objective. Although several sensors were purchased with external funds, the efforts to develop operational and subsequent data analysis approaches were unfunded as this was an add-on, target of opportunity. The effort is best described as a prototype demonstration project to test whether the seafloor depth could be inferred beneath narrow sea ice leads from a rapidly flying aircraft. All but eight AXBT sensors were donated to the University of Texas Institute for Geophysics (UTIG); AXCTDs were purchased by the Antarctic Gateway Partnership. Receiver and data processing equipment were loaned to UTIG.

  • The dataset download contains scanned copies of the acoustics log and the voyage report from voyage 7 of the Nella Dan in the 1984-1985 season. The voyage departed Hobart on the 9th of February, 1985, and conducted marine science, as well as stopping at Davis, Mawson, Edgeworth David and the Shackleton Ice Shelf before returning to Hobart on the 17th of March, 1985. See the download file for full details, but some extracts from the voyage report are copied below. Report on Voyage 7 - Marine Science on Nella Dan, Malcolm Robb Due to the cancellation of the fishing and current meter components, the marine science program was redefined as a study of bird distribution and feeding habits as related to oceanographic phenomena. This program would utilise a towed body containing CTD instrumentation in conjunction with the hydroacoustic measurement of "food". In addition a second CTD could be used from the stern using one of the partly operating trawl winches. The study design A cruise plan was designed in which the collection of bird distribution data was given priority; hydroacoustic and oceanographic data were collected to complement the bird observations. Tide Gauges Two Annderra type tide gauges were to be deployed on behalf of the Victorian Institute of Marine Science (VIMS); one at Mawson and one at Davis. Observations of seabirds and marine mammals during voyage 7 - Jennifer A Bassett Seabird observations Systematic seabird observations were conducted from the MV Nella Dan during voyage 7. This was the third voyage during the 1984/85 austral summer when seabird observations were conducted by the same observer. To record distribution and abundance of seabirds during all voyages standard ten minute counts were used following the method outlined in the Revised Edition (February 1984) of BIOMASS handbook #18 (1982). On voyage 7, as in the previous voyages, observations were made where possible during all hours of daylight. A minimum of one count per hour was made. Within the Australian BIOMASS Study Area (defined as the region 58-90 degrees East, and South of 59 degrees) standard counts were usually made twice hourly with a more or less continuous record being kept to record the occurrence of less common species, large flocks and feeding behaviour. The distribution and abundance of seals and cetacea were also recorded. A total of 380 10 minute counts were made during the voyage, 205 of these within the Australian BIOMASS Area. Hydroacoustic program report for voyages 5 and 7, 1984/85 - Ian Higginbottom During voyage 7, the new EK-400 echosounder and QD were used in conjunction with the so called 'spare' 120 kHz hull mounted transducer. The echosounder was run along 4022 miles of cruise track between 17 Feb - 11 Mar 1985. Data were recorded on punch tape for only 1248 miles of cruise track in the Prydz Bay Scullin-Monolith region.

  • Oceanographic measurements were conducted in the Southern Ocean around Heard and McDonald Islands, and in the Prydz Bay region, from January 1992 to March 1992. A total of 168 CTD (conductivity, temperature and depth) vertical profile stations were taken, most to near bottom. Niskin bottle water samples were collected for the measurement of salinity, dissolved oxygen, nutrients (phosphate, nitrate+nitrite, silicate), chlorofluorocarbons, helium, tritium, dissolved inorganic carbon, alkalinity, carbon isotopes, dissolved organic carbon, dimethyl sulphide/dimethyl sulphoniopropionate, iodate/iodide, oxygen 18, primary productivity, and biological parameters, using a 24 bottle rosette sampler. CTD salinity data have been calibrated against bottle samples, although the calibration quality varies over the cruise. CTD salinity accuracies can be summarised as follows: Stations 1-26: no bottle samples; conductivity calibration from later stations applied; accuracy therefore unknown. Stations 27-102: accuracy approximately 0.005 (PSS78). Stations 83-93: residuals a bit lower than surrounding stations: data uncertainty may be slightly increased. Stations 103-111: no bottle samples; conductivity calibration from surrounding stations applied; accuracy therefore unknown. Stations 112-168: significant increase in data scatter; accuracy approximately 0.010 (PSS78). The bottle data file contains salinities and nutrients. Dissolved oxygen data exist only as titration values recorded on the laboratory analysis sheets. The nutrient data show a fair amount of scatter, particularly when looking at the nitrate vs phosphate ratios. These data should be used with caution. Measurement and data processing techniques are described, and a summary of the data are presented in graphical and tabular form. The fields in this dataset are: oceanography ship station number date start time bottom time finish time cruise start position bottom position finish position maximum position bottom depth pressure temperature (T-90) salinity sigma-T specific volume anomaly geopotential anomaly dissolved oxygen fluorescence photosynthetically active radiation niskin bottle number

  • This dataset contains the Voyage Data from Voyage 2 2021-22 collected during RSV Nuyina’s maiden voyage to Antarctica. This purpose of this voyage was a combination of commissioning trials, ice trials and a resupply voyage. The voyage departed Hobart and visited Davis station, Casey station, and the Vanderford Glacier before returning to Hobart. Throughout the voyage, operations related to ice trials and commissioning the science systems were conducted. As the instruments were commissioned, the data produced was included in the Voyage Dataset. It should be noted that many of the instruments were uncalibrated and, therefore, data recorded from these instruments may be erroneous. Oceanographic instruments that recorded data continuously throughout RSV Nuyina voyages include the Eco fluorometer, LISST-200X particle size analyser, Phytoflash flurometer, SeaFET pH sensor, SBE38 thermometer, SBE45 thermosalinograph and the SBE63 oxygen sensor. Oceanographic and mapping instruments that recorded data intermittently throughout the voyage include the ADCP38, ADCP150, EK80 hull system, EK80 dropkeel system, hydrophones dropkeel system, MS70 fisheries sonar, multibeam EM712, multibeam EM122, TOPAS sub-bottom profiler and the sound velocity sensor drop keel system. Meteorological instruments that record data continuously throughout the voyage include the WMT700 ultrasonic anemometers, UVB radiometer, CGR3 pyrgeometer, CMP3 global solar radiometer, CUV5 broadband UV radiometer, PQS1 photosynthetically active radiometer, CL31 Ceilometer, HMP155 air temperature and humidity sensor, PWD22 present weather and visibility sensor, PTB330 digital barometer and the all sky imager. Deployable instruments that recorded data throughout the voyage include the XBT, RBR concerto CTD, sound velocity profiler, NUTTS instruments and CTD instruments. Operational and positioning instruments that recorded data continuously through the voyage include the gyro compass, IPMS alarm system and webcams. Operational and positioning instruments that recorded data intermittently throughout the voyage include the winches, USBL, hydrophones hull system, draught sensor, speedlog, echosounder 50 kHz, echosounder 200 kHz and seapath380 systems. A list of the instruments used on the voyage is available in the file, "instrument_coverage_202122020.pdf" at the top level of the dataset. To find information on the science systems themselves and the headers for the data please refer to "voyage_202122020_data_description.pdf".

  • Data are automatically and manually collected from a range of sensors on board Australian Antarctic Program vessels. From the 2021-2022 season onwards, this typically means the RSV Nuyina. The RSV Nuyina presently has approximately 90 instruments available to produce data. The instruments that contribute data to a specific dataset can be found in that voyages instrument coverage document. In addition the data from the instruments, the RSV Nuyina can also record data from spaces on the ship such as the containerised laboratories or the Wet Well. The RSV Nuyina also has a science tender which includes four instruments as well. Previous datasets from the Aurora Australis generally comprised only "underway data" - such as weather data, water temperatures, and so on. Data from the Nuyina are much broader in scope and more detailed. For full details for each dataset, see the associated child record. Oceanographic instruments that typically record data continuously throughout RSV Nuyina voyages include the Eco fluorometer, LISST-200X particle size analyser, Phytoflash flurometer, SeaFET pH sensor, SBE38 thermometer, SBE45 thermosalinograph, SBE63 oxygen sensor and the PC02 system. Oceanographic and mapping instruments that typically record data intermittently throughout voyages include the ADCP38, ADCP150, EK80 hull system, EK80 dropkeel system, Hydrophones dropkeel system, MS70 fisheries sonar, Multibeam EM712, Multibeam EM122, TOPAS sub-bottom profiler, SH90 fish finding sonar, sound velocity sensors, Ice Wave Radar and the ISAR infrared sea surface temperature system. Meteorological instruments that typically record data continuously throughout voyages include the WMT700 ultrasonic anemometers, UVB radiometer, CGR3 pyrgeometer, CMP3 global solar radiometer, CUV5 broadband UV radiometer, PQS1 photosynthetically active radiometer, CL31 Ceilometer, HMP155 air temperature and humidity sensor, PWD22 present weather and visibility sensor, PTB330 digital barometer and the all sky imager. Deployable instruments that typically record data intermittently throughout voyages include the XBT, RBR concerto CTD, sound velocity profiler, NUTTS instruments and CTD instruments. Operational and positioning instruments that record data continuously throughout voyages include the Gyro compass, GPS compass, IPMS alarm system and webcams. Operational and positioning instruments that record data intermittently throughout voyages include the winches, USBL, Hydrophones hull system, draught sensor, speedlog, echosounder 50 KHz, echosounder 200 KHz, seapath380 systems, acoustic net monitors, Arc-X radar and the hull stress and ice load monitor.