From 1 - 3 / 3
  • Metadata record for data from ASAC Project 465 See the link below for public details on this project. From the abstracts of the referenced papers: ############# The diet composition of King penguins Aptenodytes patagonicus at Heard Island (53deg 05S; 73 deg 30E) was determined from stomach contents of 98 adults captured as they returned to the island throughout 1992. During the two growth seasons, the diet was dominated by the myctophid fish Krefftichthys anderssoni (94 % by number, 48 % by mass). The paralepidid fish Magnisudis prionosa contributed less than 1 % by numbers but 17 % by mass. Mackerel icefish Champsocephalus gunnari accounted for 17 % by mass of chick diet in late winter, when chicks were malnourished and prone to starvation, although its annual contribution to the penguins diet was only 3 %. Squid was consumed only between April and August; Martialia hyadesi was the commonest squid taken, comprising 40 to 48 % of the winter diet. The remainder of the diet consisted of the squid Moroteuthis ingens and fish other than K. anderssoni. The energy content of the diet mix fed to the chicks varied seasonally being highest during the growth seasons (7.83 plus or minus 0.25 kJ.g-1) and lowest in winter (6.58 plus or minus 0.19 kJ.g-1). From energetic experiments we estimated that an adult penguin consumed 300 kg of food each of which its chick received 55 kg during the 1992 season. The chicks received large meals at the beginning of winter (1.2 plus or minus 0.3 kg) and during the middle of the second growth season (1.2 plus or minus 0.3 kg), and their smallest meals in late winter (0.4 plus or minus 0.1 kg). The gross energy required to rear a King penguin chick was estimated to be 724 MJ. The potential impact of commercial fisheries on the breeding activities of King penguins is discussed. ############# 23 king penguins (Aptenodytes patagonicus) from Macquarie Island were tracked by satellite during the late incubation period in 1998-1999 to determine the overlap in the foraging zone of king penguins with an area to be declared a marine protected area (MPA) near the island. While all penguins left the colony in an easterly direction and travelled clockwise back to the island, three penguins foraged in the northern parts of the general foraging area and stayed north of 56 south. The remaining 20 penguins ventured south and most crossed 59 south before returning to the island. The total foraging area was estimated to be 156,000 square kilometres with 36,500 square kilometres being most important (where penguins spend greater than 150 hours in total). North-foraging penguins reached on average 331 plus or minus 24 kilometres from the colony compared to 530 plus or minus 76 kilometres for the south-foraging penguins. The latter travelled an average total distance of 1313 p lus or minus 176 kilometres, while the northern foragers averaged 963 plus or minus 166 kilometres. Not only did the penguins spend the majority of their foraging time within the boundaries of the proposed MPA, they also foraged chiefly within the boundaries of a highly protected zone. Thus, the MPA is likely to encompass the foraging zone of king penguins, at least during incubation. ############# The foraging strategies of king penguins from Heard and Macquarie islands were compared using satellite telemetry, time-depth recorders and diet samples. Trip durations were 16.8 plus or minus 3.6 days and 14.8 plus or minus 4.1 days at Macquarie and Heard islands, respectively. At Macquarie Island, total distances travelled were 1281 plus or minus 203 km compared to 1425 plus or minus 516 km at Heard Island. The total time the penguins spent at sea was 393 plus or minus 66 h at Macquarie Island and 369 plus or minus 108 h at Heard Island. The penguins from Macquarie Island performed more deep dives than those from Heard Island. King penguins from Macquarie Island travelled 1.5 plus or minus 0.2 km h-1 day-1 compared to 1.3 plus or minus 0.1 km h-1 day-1. At Macquarie Island, 19% of dives were up to 70-90 m depth compared to 35% at Heard Island. The main dietary prey species were the fish Krefftychthis anderssoni and the squid Moroteuthis ingens in both groups. The differences in the at-sea distribution and the foraging behaviour of the two groups of penguins were possibly related to differences in oceanography and bathymetric conditions around the two islands. Dietary differences may be due to interannual variability in prey availability since the two colonies were studied during incubation but in different years. ############# Nearly 36,000 vertical temperature profiles collected by 15 king penguins are used to map oceanographic fronts south of New Zealand. There is good correspondence between Antarctic Circumpolar Current (ACC) front locations derived from temperatures sampled in the upper 150m along the penguin tracks and front positions inferred using maps of sea surface height (SSH). Mesoscale features detected in the SSH maps from this eddy-rich region are also reproduced in the individual temperature sections based on dive data. The foraging strategy of Macquarie Island king penguins appears to be influenced strongly by oceanographic structure: almost all the penguin dives are confined to the region close to and between the northern and southern branches of the Polar Front. Surface chlorophyll distributions also reflect the influence of the ACC fronts, with the northern branch of the Polar Front marking a boundary between low surface chlorophyll to the north and elevated values to the south. #############

  • Metadata record for data from ASAC Project 2295 See the link below for public details on this project. ---- Public Summary from Project ---- Longline fisheries represent a serious threat to the survival of Southern Ocean albatrosses and petrels. During line setting operations seabirds become entangled with baited hooks and are drawn underwater and drown. In the past 10-20 years populations of some species have decreased at an alarming rate and some species are considered to be threatened with extinction. The Antarctic Divisions seabird by-catch program is attempting to minimise mortality in longline fisheries by a multi-faceted approach involving mitigation research on fishing vessels, research on seabirds and initiatives of a semi-political nature. We chartered F/V Assassin for three days to trial a series of line weighting regimes under fishing conditions experienced in the east coast tuna fishery. Sink rates of lines with 52 combinations of swivel weight, bait type and bottom length were recorded. In Mooloolaba they don't use leaded swivels. Therefore it is an unweighted snood. Files Tuncurry_order_of_sets.xls Assassin TDR metadata.xls indicate the factors tested in the experiment, and the order in which they were undertaken. The Tuncurry_order_of_sets.xls file is the order in which the snoods (numbered by regime code) were put out during each line set. Should be read in conjunction with the metadata file. The D1, D2, D3 numbers denote the end of a working day when we downloaded the data from the day's line sets (4 on day 1, 6 on day 2, 5 on day 3). Files assassin summary means.xls assassin summary seconds to depth for analysis.xls assassin_means_to_depth.xls Assassin_time_to_depth_graphs.xls are files summarising the sink rates. The folder Final_data_files contains all the raw time depth recorder files. The fields in these datasets are: Bait type YT - yellowtail, SM - slimy mackerel, SQ - squid, SA - Saury, LYT - Live Yellow Tail, LSM - Live Slimy Mackerel, DYT - Dead Yellowtail, DSM - Dead Slimy Mackerel, DSQ - Dead Squid, DSQ + light/Sau - Dead Squid plus lightstik/Saury, DSQ + light - Dead Squid plus lightstik Bait life status (D - dead, L - live) Swivel weight (grams) Bottom length (metres) Number (n) Standard Deviation Time to depth (seconds) Light stik Side (SB - Starboard, P - Port) Day Replicate Regime (codes are the number of the snood (just a way to keep a track of the treatments)) Depth (metres) TDR Time Depth Recorder (number in each shot represent the individual time depth recorder number that was attached to the snood just near the hook) Taken from the 2008-2009 Progress Report: Progress against objectives: We have consolidated two research streams for pelagic longline fisheries. One is to conduct "conventional" mitigation research, principally focusing on methods to expedite gear sink rates, and the other is to develop an underwater bait delivery system for tuna and swordfish gear. Both streams are dealt with below. The conventional research focuses on operational aspects of gear, and at this stage does not involve seabird avoidance research (this will come later). In the last 12 months I have a) completed a designed experiment on a chartered tuna vessel off Mooloolaba, Queensland, examining the effect of mainline tension (created by use of a line shooter) on the sink rate of baited hooks in the shallow depth ranges; b) a designed experiment in Coquimbo, Chile (as part of Birdlife Internationals Albatross Task Force) examining the effect on initial sink rates of the five branch line deployment methods used by tuna vessels in the southern hemisphere, and c) completed five weeks in Mooloolaba with a chartered fishing vessel and in collaboration with DeBrett's Seafoods and Amerro Engineering, on the R and D of the underwater setting machine. Taken from the 2009/2010 Progress Report: In the past 12 months research work has focused on: a) the development of the underwater bait setting capsule, b) the effects of propeller turbulence on the sink rates of baited tuna hooks, c) the effect of improved line weighting on the catch rates of fish taxa. We have made considerable progress with the underwater setting machine and are intending to complete a "proof-of-concept" experiment with the device in Uruguay this winter/spring. Project "b" was completed on two vessels (one in Chile and one in Australia, as opportunities arose) and a paper was submitted to the Seabird Bycatch Working Group meeting of ACAP in April 2010. Part "c" above was completed in January 2010 and has morphed into a second trial that may show more promise that the first. When that trial has been completed the work will be written up for publication. Taken from the 2010/2011 Progress Report: Public summary of the season progress: Line weighting trials: A trial was completed on the effects of seabird friendly (fast sinking) tuna branch lines on the catch rates of target and non-target fish. No effects on catch rates were detected, clearing the way for test on effectiveness in deterring seabirds. Out of this trial grew a second study, involving weights placed at the hook. This trial probably has more promise than the first, and is currently underway in the Australian tuna fishery. Underwater setter: A prototype version was tested experimentally off Uruguay in the spring of 2010. The experiment revealed the potential of underwater setting to near-eliminate seabird interactions. We are currently finessing the technology with a view to returning to Uruguay (with the finished product) in autumn 2012 to complete the experiment.

  • The objectives for this project were: The project aims to quantify the patterns of dispersal and survival of newly weaned southern elephant seal pups to provide information on position at sea and foraging behaviour of the pups once they leave Macquarie Island, and to examine how this is related to position at sea and foraging behaviour in the second year. This information will be used to test the hypothesis that first year survival is a consequence of the young animals exploiting different foraging grounds to adults, and that fishing activity on the Campbell Plateau may be a contributing factor. In addition, stable isotope analysis and fatty acid signature analysis will be used to examine differences in foraging behaviour from animals while they are at sea. The raw data from this project is added to the long term database described by the metadata records 'Macquarie Island Elephant Seal Populations 1950-1965', and 'Macquarie Island Elephant Seal Populations 1985 Onwards'. This database has been taken offline, however. A snapshot of the database was taken in January, 1995, and is linked at the provided URL. For access, contact the Australian Antarctic Data Centre. A number of papers have been produced from this project. Some of these papers are included in the reference section below. The data collected for the database is as follows: Seal Number Status (new or resight) Date Location Age Class Status (cow, beachmaster, pregnant cow, dead etc) Sex Weight Length Size Back Fat Flipper Body Water Time Depth Recorder