From 1 - 2 / 2
  • From the referenced paper: The frigid concentration or freezing of seawater is an important natural phenomenon in the polar regions and results in the precipitation of a different sequence of salts - and thus produces brines of different composition - to that formed during isothermal evaporation under temperate conditions (about 20-25 degrees C). Seawater freezing, however, has been studied less extensively than evaporation and somewhat greater uncertainty exists over the exact nature of the compositional pathway followed. Most investigators have shown that the precipitation of mirabilite (Na2SO4 - 10 H2O) or gypsum (CaSO4 - 2 H2O), which both occur at the same seawater concentration factor (SWCF), is the critical difference between frigid and evaporative concentration, respectively, a consequence of the very different temperature dependence of the solubilities of these salts, as well as the effect of sodium chloride on these properties. This difference can be considered to represent a temperature-dependent chemical divide in the closed-basin concentration of seawater because it determines significantly the major ion composition of the brine and the salt mineral assemblage precipitated on further evolution of the system. Recently new insights into seawater freezing have been achieved through improvements in existing chemical equilibrium models. Along with the results of some associated experimental work, this has provided evidence for the formation of gypsum during freezing, contradicting the accepted Ringer-Nelson-Thompson model of frigid concentration firmly established in the 1950's and through subsequent studies, but validating an alternative model proposed by Gitterman two decades later.

  • Metadata record AAS_4127_antFOCE_EnvironmentalData contains seafloor Ambient Light and ambient Seawater Temperature data sets collected at the antFOCE site during the experiment. Ambient Light data was collected using Photosynthetically Active Radiation sensors (Odyssey Dataflow 392 photo diode light meters) distributed around the antFOCE site as well as several inside the experimental chambers and open plots. Seawater Temperature data were collected using Onset Hoboware Tidbit v2 (UTBI-001) temperature loggers attached to the outside of various pieces of the underwater experimental infrastructure across the antFOCE site. Refer to antFOCE report section 2.3 for deployment, sampling and on-station analysis details. https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127 Background The antFOCE experimental system was deployed in O'Brien Bay, approximately 5 kilometres south of Casey station, East Antarctica, in the austral summer of 2014/15. Surface and sub-surface (in water below the sea ice) infrastructure allowed controlled manipulation of seawater pH levels (reduced by 0.4 pH units below ambient) in 2 chambers placed on the sea floor over natural benthic communities. Two control chambers (no pH manipulation) and two open plots (no chambers, no pH manipulation) were also sampled to compare to the pH manipulated (acidified) treatment chambers. Details of the antFOCE experiment can be found in the report – "antFOCE 2014/15 – Experimental System, Deployment, Sampling and Analysis". This report and a diagram indicating how the various antFOCE data sets relate to each other are available at: https://data.aad.gov.au/metadata/records/AAS_4127_antFOCE_Project4127