From 1 - 10 / 19
  • Samples were collected from the East Antarctic margin, aboard the Australian Marine National Facility R/V Investigator from January 14th to March 5th 2017 (IN2017_V01; Armand et al., 2018). This marine geoscience expedition, named the “Sabrina Sea Floor Survey”, focused notably on studying the interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles. Ten litres seawater samples were collected using a CTD rosette equipped with Niskin® bottle and filtered through a 0.45µm Acropak® capsule filter directly into acid-cleaned 10 L polyethylene jerrycans. Samples were then acidified to pH 2 with 2 mL/L of distilled 6M HCl in a laminar flow hood. These samples were analysed for neodymium (Nd) isotopes, a tracer of ocean circulation. In the home laboratory (IMAS Trace-Metal Lab, UTAS, Hobart, Australia), seawater samples were pre-concentrated using pre-packed Nobias® PA1L (Hitachi Technologies, Japan) chelating resin cartridges following the method of Pérez-Tribouillier et al., (2019). Rare Earth Elements were separated using anion-exchange chromatography (Anderson et al., 2012) and cation-exchange chromatography (Struve et al., 2016). Finally, Nd isotopes were isolated using LN-Spec column chemistry (Pin and Zalduegui, 1997). Purified seawater sample Nd concentrations were checked prior to isotopic analysis using Sector Field Inductively Coupled Mass Spectrometry (ICP-MS) at the Central Science Laboratory (UTAS, Hobart, Australia). Nd isotope ratio measurements were then carried out at the Geochemistry Laboratory of the School of Geography, Environment and Earth Sciences of Victoria University of Wellington, New Zealand, using a Thermo Finnigan Triton thermal ionization mass spectrometer (TIMS). Data were reduced offline for outlier rejection and corrected using 146Nd/144Nd = 0.7219 for mass fractionation using the exponential law, and 144Sm/147Sm = 0.20667 for the Sm interference correction on mass 144. JNdi standard data produced for two load sizes using two amplifier configurations were identical: 143Nd/144Nd = 0.512110 ± 24 2sd (46 ppm 2rsd, n = 16) for 1 ng loads using 1013Ω amplifiers, vs. 143Nd/144Nd = 0.512112 ± 3 2sd (6 ppm 2rsd, n = 6) for 100 ng loads using 1011Ω amplifiers. The corrected 143Nd/144Nd were normalised to the JNdi standard with the published value of 0.512115 (Tanaka et al., 2000). Nd isotopic compositions are reported as eNd = [(143Nd/144Nd)sample / (143Nd/144Nd)CHUR - 1]x10,000 , where CHUR is the Chondritic Uniform Reservoir with 143Nd/144Nd)CHUR = 0.512638 (Jacobsen and Wasserburg, 1980). References - Anderson R. F., Fleisher M. Q., Robinson L. F., Edwards R. L., Hoff J. A., Moran S. B., van der Loeff M. R., Thomas A. L., Roy-Barman M. and Francois R. (2012) GEOTRACES intercalibration of 230Th, 232Th, 231Pa, and prospects for 10Be. Limnol. Oceanogr. Methods 10, 179–213. A - Armand L. K., O’Brien P. E., Armbrecht L., Baker H., Caburlotto A., Connell T., Cotterle D., Duffy M., Edwards S., Evangelinos D., Fazey J., Flint A., Forcardi A., Gifford S., Holder L., Hughes P., Lawler K.-A., Lieser J., Leventer A., Lewis M., Martin T., Morgan N., López-Quirós A., Malakoff K., Noble T., Opdyke B., Palmer R., Perera R., Pirotta V., Post A., Romeo R., Simmons J., Thost D., Tynan S. and Young A. (2018) Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report. ANU Res. Publ. - Jacobsen S. B. and Wasserburg G. J. (1980) Sm-Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155. - Pérez-Tribouillier H., Noble T. L., Townsend A. T., Bowie A. R. and Chase Z. (2019) Pre-concentration of thorium and neodymium isotopes using Nobias chelating resin: Method development and application to chromatographic separation. Talanta, 1–10. - Pin C. and Zalduegui J. F. S. (1997) Sequential separation of light rare-earth elements , thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks. Anal. Chim. Acta 339, 79–89. - Struve T., Van De Flierdt T., Robinson L. F., Bradtmiller L. I., Hines S. K., Adkins J. F., Lambelet M., Crocket K. C., Kreissig K., Coles B. and Auro M. E. (2016) Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep-sea coral aragonite. Geochemistry, Geophys. Geosystems 17, 232–240. - Tanaka T., Togashi S., Kamioka H., Amakawa H., Kagami H., Hamamoto T., Yuhara M., Orihashi Y., Yoneda S., Shimizu H., Kunimaru T., Takahashi K., Yanagi T., Nakano T., Fujimaki H., Shinjo R., Asahara Y., Tanimizu M. and Dragusanu C. (2000) JNdi-1: A neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281.

  • Sediment cores were collected from the East Antarctic margin, aboard the Australian Marine National Facility R/V Investigator from January 14th to March 5th 2017 (IN2017_V01; Armand et al., 2018). This marine geoscience expedition, named the “Sabrina Sea Floor Survey”, focused notably on studying the interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles. The cores were collected using a multi-corer (MC) and a Kasten corer (KC). The MC were sliced every centimetre, wrapped up in plastic bags, and stored in the fridge. The KC was sub-sampled using an u-channel; and sliced every centimetre once back the home laboratory (IMAS, UTAS, Hobart, Australia). This dataset presents concentrations of major and trace elements measured in bulk multi-cores sediment samples collected during the IN2017_V01 voyage. The data include the sampling date (day/month/year), the latitude and longitude (in decimal degrees), the seafloor depth (in meter), the sediment core ID, the sediment depth (in cm), and the concentrations (in ppm or μg/g) of a suite of elements. This dataset presents concentrations of major and trace elements measured in bulk sediment samples collected during the IN2017_V01 voyage. The data include the sampling date (day/month/year), the latitude and longitude (in decimal degrees), the seafloor depth (in meter), the sediment core ID (KC14), the sediment depth (in cm), and the concentrations (in ppm or μg/g) of a suite of elements. About 200 mg of dried and ground sediment were weighed into a clean Teflon vial and oxidized with a mixture of concentrated HNO3 and 30% H2O2 (1:1). Samples were then digested in open vials using an acid mixture comprising 10 mL HNO3, 4 mL HCl, and 2 mL HF, at 180°C until close to dryness. Digested residues were converted to nitric form before being oxidised with a mixture of 1 mL HNO3 and 1 mL HClO4 at 220°C until fully desiccated. Samples were finally re-dissolved in 4 mL 7.5 M HNO3. A 400 μL aliquot was removed from the 4 mL digest solution and diluted ~2500 times in 2% HNO3 for trace metals analysis by Sector Field Inductively Coupled Mass Spectrometry (SF-ICP-MS, Thermo Fisher Scientific, Bremen, Germany) at the Central Science Laboratory (UTAS, Hobart, Australia). Indium was added as internal standard (In, 100 ppb). 88Sr, 89Y, 95Mo, 107Ag, 109Ag, 111Cd, 133Cs, 137Ba, 146Nd, 169Tm, 171Yb, 185Re, 187Re, 205Tl, 208Pb, 232Th, 238U, 23Na, 24Mg, 27Al, 31P, 32S, 42Ca, 47Ti, 51V, 52Cr, 55Mn, 56Fe, 59Co, 60Ni, 63Cu and 66Zn were analysed using multiple spectral resolutions. Element quantification was performed via external calibration using multi-element calibration solutions (MISA suite, QCD Analysts, Spring Lake, NJ, USA). Raw intensities were blank and dilution corrected. References L.K. Armand, P.E. O’Brien and On-board Scientific Party. 2018. Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report, Research School of Earth Sciences, Australian National University: Canberra.

  • Sediment cores were collected from the East Antarctic margin, aboard the Australian Marine National Facility R/V Investigator from January 14th to March 5th 2017 (IN2017_V01; Armand et al., 2018). This marine geoscience expedition, named the “Sabrina Sea Floor Survey”, focused notably on studying the interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles. The cores were collected using a multi-corer, allowing to sample the surface of the sediment (top ~ 30cm). The cores were then sliced every centimetre, wrapped up in plastic bags, and stored in the fridge. The sediment samples were dated using 210-Pb analysis for future paleo-reconstructions. 210-Pb is a radioisotope which allows to date sediment back to 150 years, which is ideal for surface (i.e. recent) sediment samples. Sediment samples were dried, ground and sent to Edith Cowan University (Joondalup, Western Australia) for sample preparation and analysis. Total 210Pb was determined through the analysis of its granddaughter 210Po by alpha spectrometry after complete sample digestion using an analytical microwave in the presence of a known amount of 209Po added as a tracer (Sanchez-Cabeza et al., 1998). The concentrations of excess 210Pb were determined as the difference between total 210Pb and 226Ra (supported 210Pb), the later determined by gamma spectrometry through the measurement of its decay products 214Pb and 214Bi using a HPGe detector (CANBERRA, Mod. SAGe Well). References L.K. Armand, P.E. O’Brien and On-board Scientific Party. 2018. Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report, Research School of Earth Sciences, Australian National University: Canberra. Sanchez-Cabeza J. A., Masqué P. and Ani-Ragolta I. (1998) 210Pb and 210Po analysis in sediments and soils by microwave acid digestion. J. Radioanal. Nucl. Chem. 227, 19–22.

  • Sediment cores were collected from the East Antarctic margin, aboard the Australian Marine National Facility R/V Investigator from January 14th to March 5th 2017 (IN2017_V01; Armand et al., 2018). This marine geoscience expedition, named the “Sabrina Sea Floor Survey”, focused notably on studying the interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles. The cores were collected using a multi-corer, allowing to sample the surface of the sediment (top ~ 30cm). The cores were then sliced every centimetre, wrapped up in plastic bags, and stored in the fridge. Radiocarbon (14-C) ages were measured to build an age model for future paleo-reconstructions. Sediment samples were pre-treated in the IMAS Sediment Lab (UTAS, Hobart, Australia). Samples (~ 2 g) from the multi-cores MC01, MC03 and MC06 were dried, ground and acidified with HCl for carbonate removal using sterilised beakers. Dried and ground samples were then packed into sterilised aluminium foil and sent to DirectAMS (Radiocarbon Dating Service, USA) for 14C analysis by Accelerator Mass Spectrometer (AMS). Results were corrected for isotopic fractionation with an unreported δ13C value measured on the prepared carbon by the accelerator. References L.K. Armand, P.E. O’Brien and On-board Scientific Party. 2018. Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report, Research School of Earth Sciences, Australian National University: Canberra.

  • These data were generated by Raffaella Tolotti (raffaella.tolotti@virgilio.it) thanks to a scholarship founded by the Italian P.N.R.A. ‘TYTAN Project (PdR 14_00119): ‘Totten Glacier dYnamics and Southern Ocean circulation impact on deposiTional processes since the mid-lAte CeNozoic’ (Principal Investigator Dr. Donda Federica, Dr. Caburlotto A. - OGS, Trieste) and University of Genova (DISTAV - Prof. Corradi Nicola). These data are based on samples collected during research cruise IN2017_V01 of the RV Investigator, co-chief scientists, Leanne Armand and Phil O’Brien and were collected to provide paleoceanographic and bio/ stratigraphic information on Aurora Basin Antarctic margin evolution. The IN2017-V01post-cruise report is available through open access via the e-document portal through the ANU library. https://openresearch-repository.anu.edu.au/handle/1885/142525 The document DOI: 10.4225/13/5acea64c48693 The preferred citation are: L.K. Armand, P.E. O’Brien and On-board Scientific Party. 2018. Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report, Research School of Earth Sciences, Australian National University: Canberra, http://dx.doi.org/10.4225/13/5acea64c48693 Donda F., Leitchenkov, Brancolini G., Romeo R., De Santis L., Escutia C., O'Brien P., Armand L., Caburlotto, A., Cotterle, D., 2020. The influence of Totten Glacier on the Late Cenozoic sedimentary record. Antarctic Science, 1 -3; http://doi:10.1017/S0954102020000188 O’Brien, P.E., Post, A.L., Edwards, S., Martin, T., Carburlotto, A., Donda, F., Leitchenkov, G., Romero, R., Duffy, M., Evangelinos, D., Holder, L., Leventer, A., López-Quirós, A., Opdyke, B.N., and Armand, L.K. in press. Continental slope and rise geomorphology seaward of the Totten Glacier, East Antarctica (112°E-122°E). Marine Geology. Samples for diatom analysis were collected on board ship immediately after core recovery. Sub-samples were sent, according to the Australian standard procedures, to the DISTAV sedimentological laboratory in Genoa (Italy) and prepared for the micro-paleontological analysis according to the laboratory’s protocol (imported and tested from Salamanca University lab.; Referring Prof. Bárcena). Smear-slides and the qualitative-quantitative analyses were performed every 20 cm. Previous onboard smear slides analyses on PC03 highlighted notable variations from the other piston cores, containing some older diatom species. Moreover this core exceptionally did not exhibit a clear cyclicity like the others. It was so assumed to target a condensed sedimentary sequence giving access to older sediments. The further, more in-depth diatom biostratigraphic and quantitative analyses were performed in accordance with the international stratigraphic guide (https://stratigraphy.org/guide/), with the pluri-decennial DSDP and IODP Antarctic diatom biostratigraphic reports and specific papers (see References). Sample preparation, diatom species identification and counting were those described in Schrader and Gersonde (1978), Barde (1981 - modified) and Bodén (1991). Diatom analysis was performed with an immersion 1000x LM Reichert Jung-Polyvar microscope (Wien). Whenever possible, almost 300 diatom valves were counted per slide following the counting methodology presented in Schrader and Gersonde (1978). When diatom concentration proved too low or too concentrated, slides with modified concentrations have been prepared to optimize counting and identification while at least one hundred fields-of-view per poor concentration slide have been analyzed. For samples that were too diatom-poor, the over-concentration of material on the slides resulted in limiting resolution and taxonomic identification of the rare and mostly fragmented valves. Where diatom occurrence was rare only major fragments (>50%) or entire valves were counted. The file (.xls) contains 2 sheets: Sheet: PC03 diatoms dataset. The absolute diatom valve concentration (ADA= Absolute Valves Abundance) was then calculated following Abrantes et al. (2005), Warnock and Scherer (2014) and ADA in Taylor, Silva and Riesselmann (2018), taking in account initial weights, concentration of the samples and microscope’s characteristics, as the number of valves per gram of dry sediment. Diatoms were identified to species level following Crosta et al. (2005), Armand et al. (2005), Cefarelli et al. (2010) for modern assemblages. Older diatom taxa were identified following Gersonde et Bárcena, 1998, Witkowski et al., 2014; Bohaty et al., 2011; Gombos, 1985; Gombos, 2007; Gersonde et al., 1990; Barron et al., 2004; Harwood et al., 2001; Harwood etal., 1992. Species were considered extinct when observed stratigraphically higher than extinction boundaries as identified by Cody et al. (2008) but the coexistence or the alternation in the stratigraphic sequence of taxa referring to different biostratigraphic age ranges were considered signs of reworking. Sheet: PC03 tephra dataset. During LM microscopic observations some volcanic glass shards were observed first in smear slides and then counted during the activities of microfossils count for diatoms. This allowed to obtain the number of glass shards/g. dry sed. useful to compare with diatom and sediment datasets. Core location: Station_core Longitude Latitude A006_PC03 115.043 -64.463 Depth: The core was taken at Site A006 that was chosen into an overbank deposit on the upper western side of a turbidite channel (Minang-a Canyon) (Fig. 39 – Armand et al., 2017; O’Brien et al., 2020). The setting is at 1862 m depth, shallower respect the other cores. A possible higher energy environment, with a lower sedimentation rate has been first supposed. Temporal coverage: Start date: 2017-01-14 - Stop date: 2018-11-30 References: Armand, L.K., X. Crosta, O. Romero, J. J. Pichon (2005). The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species, Paleogeography, Paleoclimatology, Paleoecology, 223, 93-126. Cefarelli, A.O., M. E. Ferrario, G. O. Almandoz, A. G. Atencio, R. Akselman, M. Vernet (2010). Diversity of the diatom genus Fragilariopsis in the Argentine Sea and Antarctic waters: morphology, distribution and abundance, Polar Biology, 33(2), 1463-1484. Cody, R., R. H. Levy, D. M. Harwood, P. M. Sadler (2008). Thinking outside the zone: High-resolution quantitative diatom biochronology for the Antarctic Neogene, Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 92-121; doi:10.1016/j.palaeo.2007.08.020 Crosta, X., O. Romero, L. K. Armand, J. Pichon (2005). The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open ocean related species, Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 66-92. Rebesco, M., E. Domack, F. Zgur, C. Lavoie, A. Leventer, S. Brachfeld, V. Willmott, G. Halverson, M. Truffer, T. Scambos, J. Smith, E. Pettit (2014). Boundary condition of grounding lines prior to collapse, Larsen-B Ice Shelf, Antarctica, Science, 345, 1354-1358. Warnock, J. P., R. P. Scherer (2014). A revised method for determining the absolute abundance of diatoms, J. Paleolimnol.; doi:10.1007/s10933-014-9808-0 Witkowski, J., Bohaty, S.M., McCartney, K., Harwood, D.M., (2012) . Enhanced siliceous plankton productivity in response to middle Eocene warming at Southern Ocean ODP Sites 748 and 749 Palaeogeog., Palaeoclimat., Palaeoecol., 326–328, 78–94; doi:10.1016/j.palaeo.2012.02.006 Witkowski, J., Bohaty, S.M., Edgar, K.M., Harwood, D.M., (2014). Rapid fluctuations in mid-latitude siliceous plankton production during the Middle Eocene Climatic Optimum (ODP Site 1051, Western North Atlantic). Mar. Micropal., 106, 110–129. http://dx.doi.org/10.1016/j.marmicro.2014.01.001 Raffaella Tolotti unpublished data

  • Sediment cores were collected from the East Antarctic margin, aboard the Australian Marine National Facility R/V Investigator from January 14th to March 5th 2017 (IN2017_V01; (Armand et al., 2018). This marine geoscience expedition, named the “Sabrina Sea Floor Survey”, focused notably on studying the interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles. The cores were collected using a multi-corer (MC), were sliced every centimetre, wrapped up in plastic bags, and stored in the fridge. Back at the home laboratory (IMAS, UTAS, Hobart, Australia), sediment samples were dried in an oven at 40°C. Three hundred mg of dry sediment was then homogenised and vortexed for 10-sec with 12 mL of a reductive solution of 0.005M hydroxylamine hydrochloride (HH) / 1.5% Acetic Acid (AA) / 0.001M Na-EDTA / 0.033M NaOH, at pH 4 (Huang et al., 2021). The sediment was then leached a second time (to ensure the removal of all oxides and excess minerals, i.e. to isolate the detrital fraction) with 15 mL of 0.02M HH, 25% AA solution and agitated using a rotisserie (20 rpm) overnight (Wilson et al., 2018). Samples were then centrifuged, rinsed with Milli-Q water 3 times, and dried in an oven at 50°C. About 50 mg of resulting dry (detrital) sediment was ground, weighed into a Teflon vial, and digested with a strong acid mixture. First, the sediment was oxidized with a mixture of concentrated HNO3 and 30% H2O2 (1:1). Samples were then digested in open vials using 10 mL HNO3, 4 mL HCl, and 2 mL HF, at 180°C until close to dryness. Digested residues were converted to nitric form before being oxidised with a mixture of 1 mL HNO3 and 1 mL HClO4 at 220°C until fully desiccated. Samples were finally re-dissolved in 4 mL 7.5 M HNO3. A 400 μL aliquot was removed from the 4 mL digest solution and diluted ~2500 times in 2% HNO3 for trace metals analysis by Sector Field Inductively Coupled Mass Spectrometry (SF-ICP-MS, Thermo Fisher Scientific, Bremen, Germany) at the Central Science Laboratory (UTAS, Hobart, Australia). Indium was added as internal standard (In, 100 ppb). 88Sr, 89Y, 95Mo, 107Ag, 109Ag, 111Cd, 133Cs, 137Ba, 146Nd, 169Tm, 171Yb, 185Re, 187Re, 205Tl, 208Pb, 232Th, 238U, 23Na, 24Mg, 27Al, 31P, 32S, 42Ca, 47Ti, 51V, 52Cr, 55Mn, 56Fe, 59Co, 60Ni, 63Cu and 66Zn were analysed using multiple spectral resolutions. Element quantification was performed via external calibration using multi-element calibration solutions (MISA suite, QCD Analysts, Spring Lake, NJ, USA). Raw intensities were blank and dilution corrected. References Armand, L. K., O’Brien, P. E., Armbrecht, L., Baker, H., Caburlotto, A., Connell, T., … Young, A. (2018). Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report. ANU Research Publications Huang, H., Gutjahr, M., Kuhn, G., Hathorne, E. C., and Eisenhauer, A. (2021). Efficient Extraction of Past Seawater Pb and Nd Isotope Signatures From Southern Ocean Sediments. Geochemistry, Geophysics, Geosystems, 22(3), 1–22. Wilson, D. J., Bertram, R. A., Needham, E. F., van de Flierdt, T., Welsh, K. J., McKay, R. M., … Escutia, C. (2018). Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature, 561(7723), 383.

  • Diatom data from IN2017_V01: These data were generated by Amy Leventer (aleventer@colgate.edu) and undergraduate students at Colgate University, including Isabel Dove, Meghan Duffy, and Meaghan Kendall. All questions regarding the specifics of these data should be directed to Amy Leventer. These data are based on samples collected during research cruise IN2017_V01 of the RV Investigator, co-chief scientists, Leanne Armand and Phil O’Brien. The IN2017-V01post-cruise report is available through open access via the e-document portal through the ANU library. https://openresearch-repository.anu.edu.au/handle/1885/142525 The document DOI: 10.4225/13/5acea64c48693 The preferred citation is: L.K. Armand, P.E. O’Brien and On-board Scientific Party. 2018. Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report, Research School of Earth Sciences, Australian National University: Canberra, http://dx.doi.org/10.4225/13/5acea64c48693 Samples for diatom analysis were collected on board ship immediately after core recovery. Samples were dried in an oven at 50 degrees C prior to analytical work. Quantitative diatom slides were prepared according to the settling technique of Warnock and Scherer (2014). Cover slips were adhered to the slides using Norland Optical Adhesive #61. Slides were observed under Olympus CX31, BX50 and BX60, and Zeiss Primo Star light microscopes, using a 100X oil immersion objective for a total magnification of 1000X. A minimum of 400 valves or 10 transects was counted for each slide, depending on the absolute diatom abundance. Interglacial samples were relatively diatom-rich, consequently counts of 400 specimens were possible. However, most glacial samples were diatom-poor, making it very difficult and time-consuming to count 400 specimens. Under these conditions, 10 transects were counted, as has been done in previous studies of sediments with very low diatom concentrations (Rebesco et al., 2014). Valves were only counted if greaster than 50% complete. Diatoms were identified to species level when possible (Crosta et al., 2005; Armand et al., 2005; Cefarelli et al., 2010). Occurrences of biostratigraphic markers were noted and tallied concurrently. Species were considered extinct when observed stratigraphically higher than extinction boundaries as identified by Cody et al. (2008). Station_core Longitude Latitude A005_KC02_PC01 115.623 -64.471 A006_KC03 115.043 -64.463 A042_KC14 116.6403 -64.5387 C012_KC04_PC05 119.3012 -64.675 C013_KC05 119.0183 -64.6538 C015_KC06 118.696 -64.729 C018_KC07 118.498 -64.401 C020_KC08 119.739 -64.794 C022_KC11 120.049 -65.1313 C025_KC12_PC08 120.8635 -64.9538 C038_KC13 119.1035 -64.4828 Armand, L.K., X. Crosta, O. Romero, J. J. Pichon (2005), The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species, Paleogeography, Paleoclimatology, Paleoecology, 223, 93-126. Cefarelli, A.O., M. E. Ferrario, G. O. Almandoz, A. G. Atencio, R. Akselman, M. Vernet (2010), Diversity of the diatom genus Fragilariopsis in the Argentine Sea and Antarctic waters: morphology, distribution and abundance, Polar Biology, 33(2), 1463-1484. Cody, R., R. H. Levy, D. M. Harwood, P. M. Sadler (2008), Thinking outside the zone: High-resolution quantitative diatom biochronology for the Antarctic Neogene, Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 92-121, doi:10.1016/j.palaeo.2007.08.020 Crosta, X., O. Romero, L. K. Armand, J. Pichon (2005), The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open ocean related species, Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 66-92. Rebesco, M., E. Domack, F. Zgur, C. Lavoie, A. Leventer, S. Brachfeld, V. Willmott, G. Halverson, M. Truffer, T. Scambos, J. Smith, E. Pettit (2014), Boundary condition of grounding lines prior to collapse, Larson-B Ice Shelf, Antarctica, Science, 345, 1354-1358. Warnock, J. P., R. P. Scherer (2014), A revised method for determining the absolute abundance of diatoms, J. Paleolimnol., doi:10.1007/s10933-014-9808-0 These data were collected to provide paleoceanographic and biostratigraphic information. Amy Leventer, Isabel Dove, Meghan Duffy, and Meaghan Kendall unpublished data

  • Major element analyses of sediment in cores IN2017-V01-A005-PC01 and IN2017-V01-C012-PC05 collected using an Avaatech XRF scanner. Analyses taken every 50 mm. Piston cores were collected from the continental slope off the Sabrina Coast, seaward of the Totten Glacier. Cores were split, described and sampled for grain size, diatom assemblages and age dating. The archive half was then scammed using the Avaatech XRF scanner at Australian National University. The scanner works by analysing a spot every 5 cm down core for major elements using Xray Florescence to give an estimate of element abundance in counts per second. This can be converted into weight percent by analysing a calibration set of samples using other techniques (e.g. ICPMS) or to display the relative change in element abundances down core. The full suite of elements are obtained by 3 runs using different source energy levels. The files are labelled according to the energy level (in kv -kilovolts) of the source for 3 runs. Elements analysed in each run are: 10kv - Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Rh 30kv - Cu, Zn, Ga, Br, Rb, Sr, Y, Zr, Nb, Mo, Pb, Bi 50kv - Ag, Cd, Sn, Te, Ba.

  • Radiolarian data from IN2017_V01 These data were generated by Kelly-Anne Lawler (corresponding author, kelly-anne.lawler@anu.edu.au) with taxonomic assistance from Dr Giuseppe Cortese. These data are based on samples collected during voyage IN2017_V01 of the RV Investigator, co-chief scientists, Leanne Armand and Phil O’Brien. The IN2017-V01 post-cruise report is available through open access via the e-document portal through the ANU library. https://openresearch-repository.anu.edu.au/handle/1885/142525 The preferred citation is: L.K. Armand, P.E. O’Brien and On-board Scientific Party. 2018. Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report, Research School of Earth Sciences, Australian National University: Canberra, http://dx.doi.org/10.4225/13/5acea64c48693 Samples for radiolarian analysis were collected on board immediately after core recovery. Samples were air dried at ambient temperature (~21 degrees C), and their processing in preparation for microscopy was based on the method of Cortese and Prebble (2015). Cover slips were adhered to the slides using Canada Balsam and slides were observed using Olympus BH-2 inverted light microscope at up to 400x magnification. Slides were first counted to determine absolute radiolarian abundance (ARA) and, for samples where ARA was high enough, more than 400 individuals were identified per sample to species/subspecies or genus level. Taxonomic nomenclature used while preparing the dataset was per Lazarus et al. (2015) with additional clarification sought from the World Register of Marine Species (WoRMS Editorial Board, 2018) and radiolaria.org (radiolaria.org, 2018). Station_core Longitude Latitude C013_KC05 119.0183 -64.6538 C022_KC11 120.049 -65.1313 These data were collected to provide palaeoceanographic information. Cortese, G., and Prebble, J. (2015). A radiolarian-based modern analogue dataset for palaeoenvironmental reconstructions in the southwest Pacific. Marine Micropaleontology, 118, 34-49. WoRMS Editorial Board, (2018). World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Lazarus, D. B., Suzuki, N., Caulet, J.-P., Nigrini, C., Goll, I., Goll, R., Dolven, J.K. Diver, P. and Sanfilippo, A., (2015). An evaluated list of Cenozic-Recent radiolarian species names (Polycystinea), based on those used in the DSDP, ODP and IODP deep-sea drilling programs. Zootaxa, 3999(3), 310-333. radiolaria.org, 2018. radiolaria.org, (http://www.radiolaria.org/) Kelly-Anne Lawler and Giuseppe Cortese unpublished data

  • Sediment cores were collected from the East Antarctic margin, aboard the Australian Marine National Facility R/V Investigator from January 14th to March 5th 2017 (IN2017_V01; (Armand et al., 2018). This marine geoscience expedition, named the “Sabrina Sea Floor Survey”, focused notably on studying the interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles. The cores were collected using a multi-corer (MC), sliced every centimetre, wrapped up in plastic bags, and stored in the fridge. Back at the home laboratory (IMAS, UTAS, Hobart, Australia), sediment samples were dried in an oven at 40°C. Three hundred mg of dry sediment was then homogenised and vortexed for 10-sec with 12 mL of a reductive solution of 0.005M hydroxylamine hydrochloride (HH) / 1.5% Acetic Acid (AA) / 0.001M Na-EDTA / 0.033M NaOH, at pH 4 (Huang et al., 2021). The sediment was then leached a second time (to ensure the removal of all oxides and excess minerals, i.e. to isolate the detrital fraction) with 15 mL of 0.02M HH, 25% AA solution and agitated using a rotisserie (20 rpm) overnight (Wilson et al., 2018). Sample residues were then centrifuged, rinsed with Milli-Q water 3 times, and dried in an oven at 50°C. About 50 mg of resulting dry (detrital) sediment was ground, weighed into a Teflon vial, and digested with a strong acid mixture. First, the sediment was oxidized with a mixture of concentrated HNO3 and 30% H2O2 (1:1). Samples were then digested in open vials using 10 mL HNO3, 4 mL HCl, and 2 mL HF, at 180°C until close to dryness. Digested residues were converted to nitric form before being oxidised with a mixture of 1 mL HNO3 and 1 mL HClO4 at 220°C until fully desiccated. Samples were finally re-dissolved in 4 mL 7.5 M HNO3. A 400 μL aliquot was removed from the 4 mL digest solution and diluted ~2500 times in 1% HNO3 for rare earth elements (REE) analysis by Sector Field Inductively Coupled Mass Spectrometry (SF-ICP-MS, Thermo Fisher Scientific, Bremen, Germany) at the Central Science Laboratory (UTAS, Hobart, Australia). Element quantification was performed via external calibration using multi-element calibration solutions (MISA-5, QCD Analysts, Spring Lake, NJ, USA). Samples were introduced to the instrument using an Aridius® II desolvating nebulizer (CETAC Technologies, USA). The DSN was tuned daily, and oxide formation for a range of test analytes (Ba, Ce, U etc) was always less than 0.05%. Isotopes 137Ba, 139La, 140Ce, 141Pr, 146Nd, 150Nd, 147Sm, 153Eu, 158Gd, 159Tb, 163Dy, 165Ho, 166Eu, 169Tm, 172Yb and 175Lu were monitored in low resolution mode. Raw intensities were blank and dilution corrected. References - Armand, L. K., O’Brien, P. E., Armbrecht, L., Baker, H., Caburlotto, A., Connell, T., … Young, A. (2018). Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report. ANU Research Publications - Huang, H., Gutjahr, M., Kuhn, G., Hathorne, E. C., and Eisenhauer, A. (2021). Efficient Extraction of Past Seawater Pb and Nd Isotope Signatures From Southern Ocean Sediments. Geochemistry, Geophysics, Geosystems, 22(3), 1–22. - Wilson, D. J., Bertram, R. A., Needham, E. F., van de Flierdt, T., Welsh, K. J., McKay, R. M., … Escutia, C. (2018). Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature, 561(7723), 383.