From 1 - 2 / 2
  • Sea-ice motion derived from two (partially) overlapping ESA Sentinel1 [S1]A or B scenes. Satellites S1A/B carry C-band (5.405 GHz) Synthetic Aperture Radar [SAR] sensors. For this data set images from the Extra Wide swath (EW) mode of operation (swath width 410 km) have been used. EW mode data are available as a medium-resolution ground range detected (GRD) product, i.e., resolution of 93 × 87 m and pixel size 40 × 40 m. Approximately two-thirds of the EW mode data recorded over the Antarctic area are dual-polarisation (HH + HV) products. The remainder are mainly single-polarisation (HH) products. For further detail, see ESA's Copernicus web portal. Ice motion is derived from suitable SAR image pairs with sufficient spatial overlap but relatively short time separation, i.e. ideally 6 days or less. Image-crosscorrelation analysis is employed to identify displacement vectors within the image pair.

  • Envisat was was launched on 01/03/2002, by ESA and operated until 08/04/2012. It provided suitable imagery for the austral winters (May - November) of 2007 to 2011. Envisat caried a C-band (5.33 GHz; wavelength ∼ 5.6 cm) Advanced Synthetic Aperture Radar [ASAR], capable to acquire data in multiple modes (image, alternating polarization, wave, ScanSAR (wide swath), and ScanSAR (global monitoring)) at various incidence angles and in several polarisations. Of ASAR's five distinct measurement modes, the following two modes may be used to derive sea-ice motion from overlapping images in our project: 1. ASAR Wide Swath Mode -- 400 km by 400 km wide swath image. Spatial resolution of approximately 150 m by 150 m for nominal product. VV or HH polarization. 2. ASAR Global Monitoring Mode -- Spatial resolution of approximately 1000 m in azimuth by 1000 m in range for nominal product. Up to a full orbit of coverage. HH or VV polarization. For further detail, see ESA's Copernicus web portal. Sea-ice motion is derived from suitable SAR image pairs with sufficient spatial overlap but relatively short time separation, i.e. ideally 6days or less. Image-crosscorrelation analysis is employed to identify displacement vectors within the image pair. The underlying processing and analysis is part of the (mostly) automated IMCORR [IMageCORRelation] Processing, Analysis and Display System [IPADS]. This study uses C-band (HH polarisation) ASAR scenes, with an image pixel size of 75 m across a 405 km swath. -- For further information see Giles et al., Semi-automated feature-tracking of East Antarctic sea ice from Envisat ASAR imagery, Remote Sensing of Environment, 115, 2267-2276, 2011. Acknowledgement: All Envisat ASAR data are courtesy of the European Space Agency, and were obtained under agreement with ESA. The International Space Science Institute (ISSI), Bern, Switzerland, is acknowledged for supporting this study via Projects 137 and 169.