Keyword

EARTH SCIENCE > BIOSPHERE > ECOLOGICAL DYNAMICS > ECOSYSTEM FUNCTIONS > RESPIRATION RATE

2 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 2 / 2
  • General overview The following datasets are described by this metadata record, and are available for download from the provided URL. - Raw log files, physical parameters raw log files - Raw excel files, respiration/PAM chamber raw excel spreadsheets - Processed and cleaned excel files, respiration chamber biomass data - Raw rapid light curve excel files (this is duplicated from Raw log files), combined dataset pH, temperature, oxygen, salinity, velocity for experiment - Associated R script file for pump cycles of respirations chambers #### Physical parameters raw log files Raw log files 1) DATE= 2) Time= UTC+11 3) PROG=Automated program to control sensors and collect data 4) BAT=Amount of battery remaining 5) STEP=check aquation manual 6) SPIES=check aquation manual 7) PAR=Photoactive radiation 8) Levels=check aquation manual 9) Pumps= program for pumps 10) WQM=check aquation manual #### Respiration/PAM chamber raw excel spreadsheets Abbreviations in headers of datasets Note: Two data sets are provided in different formats. Raw and cleaned (adj). These are the same data with the PAR column moved over to PAR.all for analysis. All headers are the same. The cleaned (adj) dataframe will work with the R syntax below, alternative add code to do cleaning in R. Date: ISO 1986 - Check Time:UTC+11 unless otherwise stated DATETIME: UTC+11 unless otherwise stated ID (of instrument in respiration chambers) ID43=Pulse amplitude fluoresence measurement of control ID44=Pulse amplitude fluoresence measurement of acidified chamber ID=1 Dissolved oxygen ID=2 Dissolved oxygen ID3= PAR ID4= PAR PAR=Photo active radiation umols F0=minimal florescence from PAM Fm=Maximum fluorescence from PAM Yield=(F0 – Fm)/Fm rChl=an estimate of chlorophyll (Note this is uncalibrated and is an estimate only) Temp=Temperature degrees C PAR=Photo active radiation PAR2= Photo active radiation2 DO=Dissolved oxygen %Sat= Saturation of dissolved oxygen Notes=This is the program of the underwater submersible logger with the following abreviations: Notes-1) PAM= Notes-2) PAM=Gain level set (see aquation manual for more detail) Notes-3) Acclimatisation= Program of slowly introducing treatment water into chamber Notes-4) Shutter start up 2 sensors+sample…= Shutter PAMs automatic set up procedure (see aquation manual) Notes-5) Yield step 2=PAM yield measurement and calculation of control Notes-6) Yield step 5= PAM yield measurement and calculation of acidified Notes-7) Abatus respiration DO and PAR step 1= Program to measure dissolved oxygen and PAR (see aquation manual). Steps 1-4 are different stages of this program including pump cycles, DO and PAR measurements. 8) Rapid light curve data Pre LC: A yield measurement prior to the following measurement After 10.0 sec at 0.5% to 8%: Level of each of the 8 steps of the rapid light curve Odessey PAR (only in some deployments): An extra measure of PAR (umols) using an Odessey data logger Dataflow PAR: An extra measure of PAR (umols) using a Dataflow sensor. PAM PAR: This is copied from the PAR or PAR2 column PAR all: This is the complete PAR file and should be used Deployment: Identifying which deployment the data came from #### Respiration chamber biomass data The data is chlorophyll a biomass from cores from the respiration chambers. The headers are: Depth (mm) Treat (Acidified or control) Chl a (pigment and indicator of biomass) Core (5 cores were collected from each chamber, three were analysed for chl a), these are psudoreplicates/subsamples from the chambers and should not be treated as replicates. #### Associated R script file for pump cycles of respirations chambers Associated respiration chamber data to determine the times when respiration chamber pumps delivered treatment water to chambers. Determined from Aquation log files (see associated files). Use the chamber cut times to determine net production rates. Note: Users need to avoid the times when the respiration chambers are delivering water as this will give incorrect results. The headers that get used in the attached/associated R file are start regression and end regression. The remaining headers are not used unless called for in the associated R script. The last columns of these datasets (intercept, ElapsedTimeMincoef) are determined from the linear regressions described below. To determine the rate of change of net production, coefficients of the regression of oxygen consumption in discrete 180 minute data blocks were determined. R squared values for fitted regressions of these coefficients were consistently high (greater than 0.9). We make two assumptions with calculation of net production rates: the first is that heterotrophic community members do not change their metabolism under OA; and the second is that the heterotrophic communities are similar between treatments. #### Combined dataset pH, temperature, oxygen, salinity, velocity for experiment This data is rapid light curve data generated from a Shutter PAM fluorimeter. There are eight steps in each rapid light curve. Note: The software component of the Shutter PAM fluorimeter for sensor 44 appeared to be damaged and would not cycle through the PAR cycles. Therefore the rapid light curves and recovery curves should only be used for the control chambers (sensor ID43). The headers are PAR: Photoactive radiation relETR: F0/Fm x PAR Notes: Stage/step of light curve Treatment: Acidified or control The associated light treatments in each stage. Each actinic light intensity is held for 10 seconds, then a saturating pulse is taken (see PAM methods). After 10.0 sec at 0.5% = 1 umols PAR After 10.0 sec at 0.7% = 1 umols PAR After 10.0 sec at 1.1% = 0.96 umols PAR After 10.0 sec at 1.6% = 4.32 umols PAR After 10.0 sec at 2.4% = 4.32 umols PAR After 10.0 sec at 3.6% = 8.31 umols PAR After 10.0 sec at 5.3% =15.78 umols PAR After 10.0 sec at 8.0% = 25.75 umols PAR This dataset appears to be missing data, note D5 rows potentially not useable information See the word document in the download file for more information.

  • This record relates to the Australian component of the Latitudinal Gradient Project. The LGP is largely a New Zealand, US and Italian venture, but a small contribution has been made by Australian scientists. The Australian component of this work was completed as part of ASAC projects 2361 and 2682 (ASAC_2361, and ASAC_2682). Data from this project were entered into the herbarium access database, which has been linked to this record. The list below contains details of where and when samples were collected, and also the type of sample and the method of sampling. Cape Hallett and vicinity (2000, 2004): Biodiversity assessment of terrestrial plants (mosses, lichens); Invertebrate collections (mites, Collembola); plant ecology and community analysis; photosynthetic physiology of mosses and lichens; molecular genetics of mosses and lichens. Random sampling for biodiversity studies; point quadrats, releves for vegetation analysis, field laboratory experiments for physiological studies. Dry Valleys: Taylor Valley (1989, 1996), Garwood Valley (2001), Granite Harbour (1989; 1994, 1996) - plant ecology; plant physiology; biodiversity; invertebrate collections; molecular genetics of mosses. Random sampling for biodiversity studies; point quadrats, releves for vegetation analysis, field laboratory experiments for physiological studies. Beaufort Island (1996) - plant biodiversity; molecular genetics of mosses. Random sampling for biodiversity studies; point quadrats, releves for vegetation analysis, laboratory studies for molecular genetics. Darwin Glacier (1994): plant biodiversity; molecular genetics of invertebrates and mosses (random sampling for biodiversity; laboratory studies of invertebrate and moss molecular genetics). Project objectives: 1. Investigate the distribution of bryophytes and lichens in continental Antarctica 1a). to test the null hypothesis that species diversity does not change significantly with latitude; 1b). to explore the relationships between species and key environmental attributes including latitude, distance from the coast, temperature, substrate, snow cover, age of ice-free substrate. 2. To continue to participate in the Ross Sea Sector Latitudinal Gradient Project and develop an Australian corollary in the Prince Charles Mountains, involving international collaborators, incorporating the first two objectives of this project. 3. To develop an international collaborative biodiversity and ecophysiological program in the Prince Charles Mountains that will provide a parallel N-S latitude gradient study to mirror the LGP program in the Ross Sea region as part of the present RISCC cooperative program (to be superseded by the EBA (Evolution and Biodiversity of Antarctica) program) to address the above objectives. Taken from the 2008-2009 Progress Report: Progress against objectives: Continuing identification of moss and lichen samples previously collected from Cape Hallett, Granite Harbour and Darwin Glacier region. Lecidea s.l. lichens currently being studied in Austria by PhD student. Field work in Dry Valleys significantly curtailed by adverse weather. Field work planned for Darwin Glacier region and McMurdo Dry Valleys, particularly Taylor Valley and Granite Harbour region was severely curtailed due to adverse weather, helicopter diversions due to a Medical Evacuation, and other logistic constraints. 10 days of field time were lost. Limitations on field travel in Darwin Glacier region restricted the field work to a biologically depauperate region. The Prince Charles Mountains N-S transect, the only continental transect possibility for comparison with the Ross Sea area, unfortunately appears to have been abandoned through lack of logistic support. Taken from the 2009-2010 Progress Report: Identification of samples collected from AAT and Ross Sea Region continued during the year, interrupted significantly by the packing of the collection and transfer of specimens to the Tasmanian Herbarium. Work is now proceeding at the Herbarium with sorting, databasing and incorporation of packets into the Herbarium collection. The merging of the collection provides long-term security of curation and significantly boosts the cryptogam collections (35000 numbers) of the Tasmanian Herbarium.