BIOGEOCHEMICAL CYCLES
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
This project used computer-based modelling and existing field data to analyse the production and cycling of dimethylsulphide (DMS) and predicted its role in climate regulation in the Antarctic Southern Ocean. From the Final Report: Aims (i) To calibrate an existing dimethylsulphide (DMS) production model in a section of the Antarctic Southern Ocean. (ii) To use the calibrated model to investigate the effect of GCM-predicted climate change on the production and sea-to-air flux of DMS under current and enhanced greenhouse climatic conditions. (iii) To provide regional assessments of the sign and strength of the DMS-climate feedback in the Southern Ocean. Characteristics of Study Region: Our study region extends from 60-65 degrees S, 123-145 degrees E in the Antarctic Southern Ocean, and was the site of a major biological study in the austral summer of 1996 (Wright and van den Enden, 2000). Field observations show that a short-lived spring-summer bloom event is typical of these waters (El-Sayed, 1988, Skerratt et al. 1995); however there can be high interannual variability in the timing and magnitude of the bloom (Marchant and Murphy, 1994). The phytoplankton community structure has been described by Wright and van den Enden (2000), who report maximum chlorophyll (Chl) concentrations during January-March in the range (1.0-3.4) microgL-1. During this survey, macronutrients did not limit phytoplankton growth. Thermal stratification of the mixed layer was strongly correlated with high algal densities, with strong subsurface Chl maxima (at the pycnocline) observed. The mixed layer depth determined both phytoplankton community composition and maximum algal biomass. Coccolithophorids (noted DMS producers) were favoured by deep mixed layers, with diatoms dominating the more strongly stratified waters. Pycnocline depth varied from 20-50 m in open water. Algal abundance appeared to be controlled by salp and krill grazing. Field data support the existence of seasonal DMS production in the Antarctic region. However, a large range in DMS concentrations has been reported in the open ocean , reflecting both seasonal and spatial variability (Gibson et al., 1990, Berresheim, 1987; Fogelqvist, 1991). Blooms of the coccolithophores, and prymnesiophytes such as Phaeocystis, form a significant fraction (~23%) of the algal biomass (Waters et al 2000). Concentrations of DMS in sea ice are reported to be very high (Turner et al. 1995) and may be responsible for elevated water concentrations during release from melt water (Inomata et al. 1997). Field measurements of dissolved DMS made in the study region have been summarised by Curran et al. (1998). DMS concentrations were variable in the open ocean during spring and summer (range: 0-22 nM), with the higher values recorded in the seasonal ice zone and close to the Antarctic continent. Zonal average monthly mean DMS in the study region have been estimated by Kettle et al. (1999). (See downloadable full report for reference list). A copy of the referenced publication is also available for download by AAD staff. It contains the modelling information.
-
This metadata record covers ASAC projects 113, 191 and 625. (ASAC_113, ASAC_191, ASAC_625). The total lipid, fatty acid, sterol and pigment composition of water column particulates collected near the Australian Antarctic Base, Davis Station, were analysed over five summer seasons (1988-93) using capillary GC, GC-MS, TLC-FID and HPLC. Polar lipids were the dominant lipid class. Maximum lipid concentrations usually occurred in samples collected in December and January and corresponded with increased algal biomass. Both lipid profiles and microscopic observations showed significant variation in algal biomass and community structure in the water column during each season and on an interannual basis. During the period of diatom blooms (predominantly Nitzschia species) the dominant sterol and fatty acid were trans-22-dehydrocholesterol and 20:5w3, accompanied by a high 16:1w7 to 16:0 ratio. Very high polyunsaturated fatty acid and total lipid concentrations were associated with diatom blooms in the area. Bacterial markers increased late in all seasons after the summer algal blooms. Long chain C30 sterols also increased during the latter half of all seasons. Fjord samples collected in the area reflected greater biomass and diversity in algal and bacterial makers than coastal sites. Signature lipids for the alga Phaeocystis pouchetii, thought to be a major alga in Antarctic waters, were identified in field samples over the five summer seasons studied. Methods Study site Davis Base is situated on the Vestfold Hills, Antarctica and incorporates numerous lakes and fjords (Fig. 1). Samples of water column particulate matter were collected during five summer seasons (1988-93), 500 meters off-shore from Magnetic Island, situated 5 km NW of Davis. Three other sampling areas were situated in the fjords of the Vestfold hills and include two sites in Ellis Fjord, one midway along Ellis Fjord and one near Ellis Fjord mouth and one sample midway along Long Fjord (Fig. 1). These fjords are protected from the marine environment, but are both marine fjords. Davis Station and Magnetic Island were used for the weekly sample sites. The mouth of Long Fjord, the mouth of Ellis Fjord, midway down Long Fjord, the deep basin in Ellis Fjord, O'Gorman Rocks and Hawker island (ocean side) were used for monthly samples. Field collection There was an initial pilot season in 1988-89, which was followed by two more detailed studies in the summers of 1989-90 and 1990-91. Four samples was also analysed from the 1991-92 and five from the 1992-93 summer seasons. During the initial pilot study at Magnetic Island in the 1988-89 summer, three water column particle samples were taken for lipid analyses. The 1989-90 and 1990-91 summer field seasons incorporated weekly sampling of the water column particulates at Magnetic Island. The phytoplankton in the fjords were studied during the summers of 1989-90 and 1990-91. The three sites that were chosen were all sampled three times in each season. Samples were also collected during the 1989-90 and 1990-91 seasons from the Magnetic Island and Fjord site s for pigment analyses. Three and five samples were collected respectively in the 1991-92 and 1992-93 seasons. Samples were also taken for microscopic analyses. For lipid analyses 30-40 liter water column particulate samples were collected at a depth of 10 m. A Seastar or INFILTREX water sampler was used in situ to filter the water through a 14.2 cm Schleicher and Schuell glass fibre filter over a three to four hour period. All filters used during sampling were preheated in a muffle furnace at 500 degrees C overnight to minimise contamination. For pigment analyses 2 to 4 litres were filtered through glass fibre filters (4.7 cm GF/F, nominal pore size 0.7 micro meters). The samples were frozen at -20 degrees C until extraction.