STEROLS
Type of resources
Topics
Keywords
Contact for the resource
Provided by
-
---- Public Summary from Project ---- The lakes and fjords of the Vestfold Hills region of Antarctica provide unique ecosystems for studying environmental changes in Antarctica over the past 8000 years. Studies of the changes in organic matter composition in sediment cores provide information how the microbial and plankton communities have changed over time in response to varying chemical and physical conditions. Our study will provide new information about how the cycles of the biologically-important elements carbon and sulfur are linked and why some sediments can preserve large amounts of organic carbon. This information will be useful for studies of palaeoclimate and will also provide valuable insights into the processes that produce petroleum source rocks. From the abstracts of the referenced papers: Preserved ribosomal DNA of planktonic phototrophic algae was recovered from Holocene anoxic sediments of Ace Lake (Antarctica), and the ancient community members were identified based on comparative sequence analysis. The similar concentration profiles of DNA of haptophytes and their traditional lipid biomarkers (alkenones and alkenoates) revealed that fossil rDNA also served as quantitative biomarkers in this environment. The DNA data clearly revealed the presence of six novel phylotypes related to known alkenone and alkenoate-biosynthesising haptophytes with Isochrysis galbana UIO 102 as their closest relative. The relative abundance of these phylotypes changed as the lake chemistry, particularly salinity, evolved over time. Changes in the alkenone distributions reflect these population changes rather than a physiological response to salinity by a single halophyte. Using this novel palaeo-ecological approach of combining data from lipid biomarkers and preserved DNA, we showed that the post-glacial development of Ace Lake from freshwater basin to marine inlet and the present-day lacustrine saline system caused major qualitative and quantitative changes in the biodiversity of the planktonic populations over time. Post-glacial Ace Lake (Vestfold Hills, Antarctica), which was initially a freshwater lake and then an open marine system, is currently a meromictic basin with anoxic, sulfidic and methane-saturated bottom waters. Lipid and 16S ribosomal RNA gene stratigraphy of up to 10,400-year-old sediment core samples from the lake revealed that these environmentally induced chemical and physical changes caused clear shifts in the species composition of archaea and aerobic methanotrophic bacteria. The combined presence of lipids specific for methanogenic archaea and molecular remains of aerobic methanotrophic bacteria (13C-depleted delta8(14)-sterols and 16S rRNA genes) revealed that an active methane cycle occurred in Ace Lake during the last 3000 calendar years and that the extant methanotrophs were most likely introduced when it became a marine inlet (9400 y BP); rDNA sequences showed 100% sequence similarity with Methanosarcinales species from freshwater environments and were the source of sn-2- and sn3-hydroxyarchaeols. Archaeal phylotypes related to uncultivated Archaea associated with various marine environments were recovered from the present-day anoxic water column and sediments deposited during the meromictic and marine period.
-
This metadata record covers ASAC projects 113, 191 and 625. (ASAC_113, ASAC_191, ASAC_625). The total lipid, fatty acid, sterol and pigment composition of water column particulates collected near the Australian Antarctic Base, Davis Station, were analysed over five summer seasons (1988-93) using capillary GC, GC-MS, TLC-FID and HPLC. Polar lipids were the dominant lipid class. Maximum lipid concentrations usually occurred in samples collected in December and January and corresponded with increased algal biomass. Both lipid profiles and microscopic observations showed significant variation in algal biomass and community structure in the water column during each season and on an interannual basis. During the period of diatom blooms (predominantly Nitzschia species) the dominant sterol and fatty acid were trans-22-dehydrocholesterol and 20:5w3, accompanied by a high 16:1w7 to 16:0 ratio. Very high polyunsaturated fatty acid and total lipid concentrations were associated with diatom blooms in the area. Bacterial markers increased late in all seasons after the summer algal blooms. Long chain C30 sterols also increased during the latter half of all seasons. Fjord samples collected in the area reflected greater biomass and diversity in algal and bacterial makers than coastal sites. Signature lipids for the alga Phaeocystis pouchetii, thought to be a major alga in Antarctic waters, were identified in field samples over the five summer seasons studied. Methods Study site Davis Base is situated on the Vestfold Hills, Antarctica and incorporates numerous lakes and fjords (Fig. 1). Samples of water column particulate matter were collected during five summer seasons (1988-93), 500 meters off-shore from Magnetic Island, situated 5 km NW of Davis. Three other sampling areas were situated in the fjords of the Vestfold hills and include two sites in Ellis Fjord, one midway along Ellis Fjord and one near Ellis Fjord mouth and one sample midway along Long Fjord (Fig. 1). These fjords are protected from the marine environment, but are both marine fjords. Davis Station and Magnetic Island were used for the weekly sample sites. The mouth of Long Fjord, the mouth of Ellis Fjord, midway down Long Fjord, the deep basin in Ellis Fjord, O'Gorman Rocks and Hawker island (ocean side) were used for monthly samples. Field collection There was an initial pilot season in 1988-89, which was followed by two more detailed studies in the summers of 1989-90 and 1990-91. Four samples was also analysed from the 1991-92 and five from the 1992-93 summer seasons. During the initial pilot study at Magnetic Island in the 1988-89 summer, three water column particle samples were taken for lipid analyses. The 1989-90 and 1990-91 summer field seasons incorporated weekly sampling of the water column particulates at Magnetic Island. The phytoplankton in the fjords were studied during the summers of 1989-90 and 1990-91. The three sites that were chosen were all sampled three times in each season. Samples were also collected during the 1989-90 and 1990-91 seasons from the Magnetic Island and Fjord site s for pigment analyses. Three and five samples were collected respectively in the 1991-92 and 1992-93 seasons. Samples were also taken for microscopic analyses. For lipid analyses 30-40 liter water column particulate samples were collected at a depth of 10 m. A Seastar or INFILTREX water sampler was used in situ to filter the water through a 14.2 cm Schleicher and Schuell glass fibre filter over a three to four hour period. All filters used during sampling were preheated in a muffle furnace at 500 degrees C overnight to minimise contamination. For pigment analyses 2 to 4 litres were filtered through glass fibre filters (4.7 cm GF/F, nominal pore size 0.7 micro meters). The samples were frozen at -20 degrees C until extraction.