2018
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
-
Zooplankton was counted and identified from three sites over the 5-year period. The net used (200 m Bongo net) was designed to catch meso-zooplankton with an integrated vertical tow through the water column. One net from each of the paired Bongo samples was analysed and the data expressed as numbers per m3. Copepods dominated the zooplankton, with other groups such as salps, krill, appendicularians, cladocerans, chaetognaths and meroplanktonic larvae being seasonally dominant.
-
This dataset comes from the Floating Forests project (http://floatingforests.org). Floating Forests is an online citizen science project attempting to map the cover of surface-canopy forming kelps, primarily the giant kelp Macrocystis pyrifera, using Landsat data. To acquire the data, citizen scientists were given tiles of images taken from the Landsat series of satellites (https://landsat.usgs.gov/) scenes that had been manipulated to make kelp more visible. Landsat has a roughly two week repeat time for the entire globe and a 30m resolution, although given variability in weather quarterly aggregation is recommended. Each image was scene at minimum four times. If no kelp was noted, then it was retired and scored as a zero. If kelp was noted in the first four classifications, then an individual image was shown to fifteen people total. The polygons of kelp beds presented here represent consensus classifications from the platform and are tagged with minimum number of users who classified pixels in the polygons as kelp. For example, at the five user threshold, each area represents pixels where at least five users - not neccesarily the same five users - said there was kelp present. This consensus classification has been shown to match very closely to expert classifications. For more information and links to outputs, see http://blog.floatingforests.org in addition to the main project site. Or go to the main project site, and start a conversation in the "talk" section of the site.
-
Biologically relevant macronutrients, nitrate + nitrite, silicate, phosphate and ammonia, were measured at all sites throughout the study. Nitrate + nitrite values (NOx) at the surface showed clear seasonal trends, peaking over winter and drawing down to near zero in summer and autumn. Phosphate concentrations also reached a peak in winter, which was associated with Southern Ocean influence. Median ammonium concentrations at all sites were generally <0.5 μM, with no clear peaks in any season or month. Overall, the lowest values were measured in August and other months showed reasonable spread around the median. Median silicate concentrations were consistently highest at sites 1 and 9, followed by site 5. Water from the River Derwent flows through site 1, then tracks east towards site 9 then site 5. Seasonally, silicate was generally highest in winter when the River Derwent outflow is also greatest.
-
Water temperature, averaged across the water column, in Storm Bay followed a distinct seasonal cycle each year, reaching a low of 9 °C and a high of ~ 19 °C. Warmest temperatures were in February, followed by a gradual cooling throughout autumn to a winter minimum in August, then increasing again during spring. Across the sites, the median temperature varied little, with site 3, the most marine of the sites, showing the least spread in values. Median salinity varied little across Storm Bay, being slightly higher at sites 3 and 6, highlighting the marine nature of site 3 and the patterns of seawater circulation in Storm Bay. The lowest salinities were recorded at site 1, where less saline surface waters flow into the bay from the Derwent Estuary. Seasonally, salinity was highest in autumn, with slightly fresher water present in Storm Bay in spring. Some lower salinity values were recorded in July and August, suggesting the presence of less saline subantarctic water flowing into the bay, or freshwater flow from the Derwent. Glider transects show slight lower salinity in summer, then mild stratification in autumn to spring, especially in the shallow regions near the mouth of the Derwent.
-
Comprehensive baseline environmental data for Storm Bay in south eastern Tasmania were required to inform the salmonid industry regarding site selection, to provide background environmental data before large-scale farming commences, and to support the development of a scientifically relevant and cost-effective environmental monitoring program. Storm Bay is a large deep bay that receives freshwater inflow from the River Derwent on its north-western boundary and exchanges water with Frederick Henry Bay on its north-eastern boundary. The eastern and western boundaries are defined by the Tasman Peninsula and Bruny Island, respectively, and the southern boundary connects with the Tasman Sea. This area is a mixing zone between the River Derwent outflow and oceanic waters. The oceanography in Storm Bay is complex and is characterized by considerable fluctuations in temperature, salinity and nutrients on variable temporal and spatial scales. This is due to the southerly extension of warm nutrient-depleted sub-tropical waters transported via the East Australian Current (EAC) down the east coast of Tasmania over summer, whilst the south and south-west coasts are influenced by cooler, nutrient-rich sub-Antarctic waters from the south and the Leeuwin Current from the north-west (Buchanan et al. 2014). The current project arose in response to the salmon aquaculture industry recognising the need for increased scientific knowledge to support ecologically sustainable development of Atlantic salmon (Salmo salar) farming operations in south-eastern Tasmania, particularly expansion into Storm Bay. The information provided will assist salmon companies to manage their operations in Storm Bay under varying environmental conditions. Our research has also provided the opportunity to investigate changes in water quality over a quarter of a century, as CSIRO investigated seasonal and inter-annual variability in chemical and biological parameters in Storm Bay during 1985-89. We sampled at the same “master station” in Storm Bay as CSIRO and used similar procedures where possible. Five sites were sampled monthly in Storm Bay for over five years from November 2009 to April 2015, except on rare occasions when weather conditions were unsuitable, and bimonthly at times in 2013 when external funding was not available. Site 1 was located at the mouth of the Derwent estuary and the entrance to Storm Bay, site 2 was in the same location as the ‘master site’ of a CSIRO study in 1985-88, site 3 was furthest offshore and provided the most information on oceanic currents influencing the bay, while sites 5 and 6 were requested by the salmon aquaculture industry as potential sites for expansion of salmon farming. Site 4 was further offshore and monitoring at this site was discontinued after three months because of insufficient time to collect samples from all sites in one day. An additional site, 9, at the entrance to Frederick Henry Bay was included from 18 July 2011 at the request of the Marine Farming Branch, Department of Primary Industries, Parks, Water and Environment (DPIPWE), to provide information on water quality coming from Frederick Henry Bay. Adjacent to, and largely unaffected by the River Derwent, Frederick Henry Bay is a large marine embayment with limited freshwater input from the Coal River at its northern boundary. ---------------------------------------------- See child records linked to this parent record for specific context and methodologies for each of the monitoring variables (phytoplankton, zooplankton, chlorophyll, pigment, nutrients, oceanography).
-
Phytoplankton was counted and identified from five sites over the 5-year period. Annual cycles in abundance are available (as cells mL-1), along with detailed species identification. Cell measurements and approximate geometric shape were also recorded for the calculation of biovolume (μL cell-1). Diatoms and dinoflagellates dominated the samples in terms of biomass, however, small cells were also very abundant throughout each year. The data are restricted to an integrated sample from the top 12 m of the water column. Fluorescence profiles elsewhere in this dataset can provide an indication of phytoplankton presence lower in the water column.
-
Water samples for the analysis of pigments using High Performance Liquid Chromatography (HPLC) were collected only in the first 12 months of the sampling program. Pigment analysis is used to estimate algal community composition and concentration. Pigments which relate specifically to an algal class are termed marker or diagnostic pigments. Some of these diagnostic pigments are found exclusively in one algal class (e.g. prasinoxanthin in prasinophytes), while others are the principal pigments of one class, but are also found in other classes (e.g. fucoxanthin in diatoms and some haptophytes; 19′-butanoyloxyfucoxanthin in chrysophytes and some haptophytes). The presence or absence of these diagnostic pigments can provide a simple guide to the composition of a phytoplankton community, including identifying classes of small flagellates that cannot be determined by light microscopy techniques. There was general similarity in pigment composition between all sites, with a presence of diatoms (as indicated by fucoxanthin), haptophytes (hex-fucoxanthin), prasinophytes (prasinoxanthan), cryptophytes (alloxanthan), cyanophytes (zeaxanthan) and green algae (chl-b) in nearly all monthly samples at all sites. The green algae could be in the form of euglenophytes or prasinophytes; the absence of the pigment lutein in all samples indicates that chlorophytes are not present in Storm Bay, at least at the sites sampled.
-
Chlorophyll a concentration is widely used as a proxy to describe trends in phytoplankton biomass over spatial and temporal scales. The concentration of chlorophyll a in Storm Bay showed surprisingly little variation across the seasons. There was a gradient in concentration from site 1 to site 3, where chlorophyll a decreased slightly. It was highest and most variable at the inshore sites 1 and 9, and lowest at site 3, furthest out in the bay. There was no clear annually recurrent seasonal bloom, although data suggests higher values in spring and autumn (see later time series).
-
Observational data for the Kelp Ecosystem Ecology Network. These data come from transects of rocky reefs taken around the world using the KEEN observational data protocol (see http://kelpecosystems.org for full description of methods and handbook). See “How” for methods. Briefly, the observational data consists of the following components, all included here: site information, fish observations, quadrat sampling, band transect sampling, percent cover from uniform point counts, and kelp morphometrics. Data Files Data files included and what they contain are as follows: keen_sites.csv - Physical and locational data for all KEEN sites and transect. keen_cover.csv - Percent cover of sessile algae and invertebrates. keen_fish.csv - Counts of fish by size class along a transect. keen_quads.csv - Counts of common algae, sessile invertebrates, and demersal fish that can be individuated. keen_swath.csv - Counts of rarer algae, sessile invertebrates, and demersal fish that can be individuated. Data Use To use the observational data here for published work we ask that 1) You contact the network coordinator, jarrett.byrnes@umb.edu, and notify them of your intention so that we can coordinate among any ongoing projects using the same data, 2) if the data has not been used in a publication in the literature before, we request that you reach out to the PIs responsible for the data you will be using and engage in a conversation about co-authorship, 3) if it has been used previously, merely cite the datasets associated with each PI that you use. The references are listed below. For access to the entire data cleaning and processing pipeline, see https://github.com/kelpecosystems/observational_data. For access to scans of the original data sheets, contact jarrett.byrnes@umb.edu. ------------------------------------------------------ For general methods: Byrnes, Jarrett E.K., Haupt, Alison J., Reed, Daniel C., Wernberg, Thomas., Pérez-Matus, Alejandro., Shears, Nick T., Konar, Brenda, Gagnon, Pat, and Vergés, Adriana. 2014. Kelp Ecosystem Ecology Network Monitoring Handbook. Kelp Ecosystem Ecology Network. For specific data sets, use the following, but also include date accessed from TemperateReefBase in order to track which version of the data you are using. Byrnes, Jarrett E.K., Haupt, Alison J., Lyman, Ted. 2014. Kelp forest communities at Appledore Island, the Boston Harbor Islands, and Salem Sound. Kelp Ecosystem Ecology Network. Dijkstra, Jennifer A., Mello, Kristen. 2015. Kelp forest communities at York, Maine. Kelp Ecosystem Ecology Network. Grabwoski, Jonathan and MacMahan, Marissa. 2015. Kelp forest communities in Nahant, Massachusetts, and Pemaquid, Maine. Kelp Ecosystem Ecology Network. Humphries Austin T., Paight C, Ben-Horin Tal, Green Lindsay, Thornber, Carol. 2016. Kelp forest communities in Narragansett Bay, Rhode Island. Kelp Ecosystem Ecology Network. Rasher, Douglass and Price, Nicole. 2017. Kelp forest communities of central and downeast Maine. Kelp Ecosystem Ecology Network. Peréz-Matus, Alejandro and Shaughnessy, Brianna. 2017. Kelp forest communities of central and northern Chile. Kelp Ecosystem Ecology Network.